理论数学  >> Vol. 5 No. 5 (September 2015)

由常规故障和临界人为错误引起系统故障的可修复系统的算子性质
Properties of the System Operator of the Repairable System under Common-Cause Failure and Critical Human Error

DOI: 10.12677/PM.2015.55032, PDF, HTML, XML, 下载: 1,737  浏览: 4,286  科研立项经费支持

作者: 苑 爽*, 王 辉:哈尔滨师范大学,黑龙江 哈尔滨

关键词: 可修复系统预解正算子增长界共尾谱上界Repairable Systems Resolvent Positive Operator Growth Bound Cofinal Upper Spectral Bound

摘要: 本文讨论了由常规故障和临界人为错误引起系统故障的可修复系统,通过运用C0半群的理论,证明该系统的预解正算子是稠定的,从而证明了系统算子的增长界为0。最后运用共尾概念和相关理论,证明了该系统算子的谱上界也为0。
Abstract: The objective of this paper is to research a stochastic model representing system under common- cause failure and critical human error. Using C0 semigroup theory, we first prove that the system operator is a densely defined resolvent positive operator. Then, we set the adjoint operator of the system operator and its domain. So, we can prove that 0 is the growth bound of the system operator. At last, by using the concept of cofinal and relative theory we can prove that 0 is also spectral bound of the system operator.

文章引用: 苑爽, 王辉. 由常规故障和临界人为错误引起系统故障的可修复系统的算子性质[J]. 理论数学, 2015, 5(5): 227-232. http://dx.doi.org/10.12677/PM.2015.55032

参考文献

[1] Dhillon, B.S. and Anuded, O.C. (1993) Common-cause failure analysis of a non-identical unitparallel system with ar-bitrarily distributed repair time. Microelectron Reliability, 33, 88-10.
http://dx.doi.org/10.1016/0026-2714(93)90048-4
[2] 严伟, 王雪峰, 贾诺 (2008) 由常规故障和临界人为错误引起系统故障的可修复系统稳定性分析. 数学的实践与认识, 24, 165-172.
[3] 朱永生, 王辉 (2009) 由常规故障和临界人为错误引起系统故障的可修复系统稳态解的最优控制. 数学的实践与认识, 16, 235-240.
[4] 贾诺, 王涛 (2007) 两不同部件可修复系统稳定解的最优控制. 数学的实践与认识, 20, 101-107.
[5] 陈传璋, 侯宗义, 李明忠 (1987) 积分方程理论及其应用. 上海科学出版社, 上海.
[6] Arendt, W. (1987) Resolvent positive oper-ators. Proceedings London Mathematical Society, 54, 321-349.
http://dx.doi.org/10.1112/plms/s3-54.2.321
[7] 匡继昌 (2002) 实分析与发函分析. 高等教育出版社, 北京.
[8] Gupur, G., Li, X.Z. and Zhu, G.T. (2001) Functional analysis method in queueing theory. Research Information, Hertfordshire.