β-环糊精/羟基磷灰石的制备与性能研究
Study on Preparation and Characterization of β-Cyclodextrin/Hydroxyapatite
DOI: 10.12677/HJCET.2016.61001, PDF, HTML, XML, 下载: 2,265  浏览: 5,436 
作者: 崔真真, 周奥佳:东华大学化学化工与生物工程学院,上海
关键词: 羟基磷灰石β-环糊精棒状作用机理Hydroxyapatite β-Cyclodextrin Rodlike Structures Reaction Mechanism
摘要: 本研究分别以CaCl2和H3PO4为钙源和磷源,NaOH为pH调节剂,成功制备了β-环糊精(β-CD)/羟基磷灰石(HAP)复合物。借助傅里叶变换红外光谱(FT-IR)、热重分析(TG)和扫描电镜(SEM)对反应产物进行了表征,研究β-CD浓度对产物的组成、热稳定性、形貌等的影响。结果表明,β-CD可以影响产物组成和形貌,随着β-CD浓度的增大,产物由最初的无规团聚逐渐变成针状、棒状结构。结合β-CD的分子结构及其自组装性能,对β-CD与HAP的反应机理进行了初步探讨。
Abstract: β-cyclodextrin/hydroxyapatite was prepared by using calcium chloride (CaCl2) and phosphate (H3PO4) as the resource of calcium and phosphorus, respectively. During the synthesis, NaOH was used as pH adjusting agent to control the pH of the solution. Fourier transform infrared spectros-cope (FT-IR), thermogravimetric analysis (TG) and scanning electron microscopy (SEM) were used to characterize the product. The effects of the concentration of β-cyclodextrin on the size, compo-sition and morphology of the product were investigated. The results showed that β-cyclodextrin could significantly influence the composition and morphology of the product. With the increasing of β-cyclodextrin concentration, the structure of the product grew from the initial random aggregation to needle-like and rodlike structures. The reaction mechanism between β-CD and HAP was discussed on the basis of the special molecular structure of β-CD and its self-assemble property.
文章引用:崔真真, 周奥佳. β-环糊精/羟基磷灰石的制备与性能研究[J]. 化学工程与技术, 2016, 6(1): 1-6. http://dx.doi.org/10.12677/HJCET.2016.61001

参考文献

[1] Fathi, M.H. and Hanfi, A. (2007) Evaluation and Characterization of Nanostructure Hydroxyapatite Powder Prepared by Simple Sol-Gel Method. Materials Letters, 61, 3978-3983.
http://dx.doi.org/10.1016/j.matlet.2007.01.028
[2] 王宏伟, 贾延辉. 纳米羟基磷灰石的制备方法及应用[J]. 承德医学院学报, 2008, 25(3): 304-305.
[3] 赵珊, 李延报, 李东旭. 功能性羟基磷灰石生物复合材料的研究进展[J]. 材料导报: 综述篇, 2010, 24(8): 69-72.
[4] 陈佳正, 等. 骨组织材料制备研究[J]. 西南民族大学学报, 2010, 36(5): 787-790.
[5] 石和彬, 钟宏, 刘羽, 等. 共沉淀法制备纳米羟基磷灰石[J]. 化学与生物工程, 2012, 29(8): 16-20.
[6] 袁媛, 刘昌胜. 溶胶凝胶法制备纳米羟基磷灰石[J]. 中国医学科学院学报, 2002, 24(2): 129-133.
[7] 李亚东. 水热法制备羟基磷灰石研究进展[J]. 中国口腔种植学杂志, 2002, 7(4): 189-192.
[8] 朱丹琛, 肖秀峰, 等. 以环糊精为模板水热合成羟基磷灰石[J]. 人工晶体学报, 2010, 39(1): 214-220.
[9] 邱超凡, 肖秀峰, 等. β-环糊精为模板控制合成球状羟基磷灰石[J]. 人工晶体学报, 2007, 36(6): 1390-1402.
[10] Martínez-Pérez, C.A. and García-Montelongo, J. (2012) Preparation of Hydroxyapatite Nanoparticles Facilitated by the Presence of β-Cyclodextrin. Journal of Alloys and Compounds, , 432-436.
[11] Son, K.D. and Kim, Y.-J. (2013) Morphological Structure and Characteristics of Hydroxyapatite/β-Cyclodextrin Com- posite Nanoparticles Synthesized at Different Conditions. Materials Science and Engineering: C, 33, 499-506.
http://dx.doi.org/10.1016/j.msec.2012.09.020
[12] Yang, L., Zhang, X.Y., Liao, Z.J., Guo, Y.M., Hu, Z.G. and Cao, Y. (2003) Interfacial Molecular Recognition between Polysaccharides and Calciumcarbonate during Crystallization. Journal of Inorganic Biochemistry, 97, 377-383.
http://dx.doi.org/10.1016/S0162-0134(03)00311-8
[13] Jaiswal, S., Duffy, B., Jaiswal, A.K., Stobie, N. and McHale, P. (2010) Enhancement of the Antibacterial Properties of Silver Nanoparticles Using β-Cyclodextrin as a Capping Agent. International Journal of Antimicrobial Agents, 36, 280-283.
http://dx.doi.org/10.1016/j.ijantimicag.2010.05.006
[14] 薛青芳. β-环糊精/纳米银的制备及对粘胶非织造布的抗菌整理[D]: [硕士学位论文]. 武汉: 武汉纺织大学, 2013: 26-28.
[15] Cobos Cruz, L.A., Martinez Perez, C.A., Monreal Romero, H.A. and García Casillas, P.E. (2008) Synthesis of Magnetite Nanoparticles-β-Cyclodextrin Complex. Journal of Alloys and Compounds, 466, 330-334.
http://dx.doi.org/10.1016/j.jallcom.2007.11.081
[16] Wang, T., Dorner-Reisel, A. and Müller, E. (2004) Ther-mogravimetric and Thermokinetic Investigation of the Dehydroxylation of a Hydroxyapatite Powder. Journal of the European Ceramic Society, 24, 693-698.
http://dx.doi.org/10.1016/S0955-2219(03)00248-6
[17] 孙晓红, 郑春明. β-环糊精作为超分子壳制备BaTiO3纳米晶体[J]. 无机化学学报, 2008, 24(1): 93-97.