岩石物理分析技术在时移地震中的应用研究
The Study on Rock Physical Analysis Technique for the Time-Lapse Seismic Monitoring
DOI: 10.12677/APP.2016.64010, PDF, HTML, XML, 下载: 2,029  浏览: 4,524  国家科技经费支持
作者: 张显文*:中海油研究总院,北京
关键词: 时移地震岩石物理油藏监测提高采收率流体变化Time-Lapse Seismic Rock Physic Reservoir Monitoring Enhance Oil Recovery Fluid Variation
摘要: 岩石物理分析是油藏开发时移地震监测的基础,是连接油藏参数变化和地震响应变化的桥梁。本文以A油田水驱油藏时移地震应用研究为例,系统开展了岩石物理分析在时移地震应用的可行性研究、油藏开发的时移地震响应规律、时移地震油藏参数表征和时移地震综合研究成果解析四个方面的应用研究,结果表明:首先,A油藏流体性质为轻质原油,水驱油表现了较好的岩石物理条件,流体和压力变化是影响油藏开发地层速度和密度变化的主要因素;其次,A油藏具有较好的水驱油时移地震响应特征,弹性参数对水驱油流体变化响应最敏感;另外,油藏开发流体变化和孔隙压力变化对地震响应特征的影响相反,且孔隙度越大,时移地震响应特征越明显。
Abstract: Rock physical analysis is the basis of time-lapse seismic monitoring for reservoir waterflood de-velopment, which is the bridge connecting variations of reservoir parameters and changes of the seismic response. We make rock physical analysis on reservoir A of waterflooding development, which includes four aspects time-lapse seismic studies on the feasibility, the response characteristics, reservoir parameters characterization and the results interpretation. The study results show that the reservoir A has the good rock physical conditions, and the variation of fluid and pressure are main influence factors on reservoir velocity and density during oil development. Then the time-lapse seismic response features are obvious for reservoir A, and the elastic parameter is the most sensitive for the reservoir fluid variation on water-flooding process. As to time-lapse seismic response, the influences of fluid and pressure are opposite, and the more porosity is, the more obvious is time-lapse seismic response.
文章引用:张显文. 岩石物理分析技术在时移地震中的应用研究[J]. 应用物理, 2016, 6(4): 68-76. http://dx.doi.org/10.12677/APP.2016.64010

参考文献

[1] Gregory, A.R. (1976) Fluid Saturation Effects on Dynamic Elastic Properties of Sedimentary Rocks. Geophysics, 41, 895-921. http://dx.doi.org/10.1190/1.1440671
[2] Clark, V.A. (1992) The Properties of Oil under In-Situ Conditions and Its Effect on the Seismic Properties of Rocks. Geophysics, 57, 894-901. http://dx.doi.org/10.1190/1.1443302
[3] Wang, Z. and Nur, A. (1987) Velocities in Hydrocarbons and Hydrocarbon-Saturated Rocks and Sands. Expanded Abstracts of 57th Annual Internat SEG Mtg, 374-379. http://dx.doi.org/10.1190/1.1891881
[4] 史謌, 沈文略, 杨东全. 岩石弹性波速度和饱和度、孔隙流体分布的关系[J]. 地球物理学报, 2003, 46(1): 138-142.
[5] Batzle, M. and Wang, Z. (1992) Seismic Properties of Pore Fluids. Geophysics, 57, 1396-1408. http://dx.doi.org/10.1190/1.1443207
[6] Wang, Z. (2001) Fundamentals of Seismic Rock Physics. Geophysics, 66, 398-412. http://dx.doi.org/10.1190/1.1444931
[7] Wang, Z.J. (1997) Feasibility of Time Lapse Seismic Reservoir Monitoring: The Physical Basis. The Leading Edge, 16, 1327-1329. http://dx.doi.org/10.1190/1.1437796
[8] Batzle, M., Christiansen, R. and Han, D.H. (1998) Reservoir Recovery Processes and Geophysics. The Leading Eage, 17, 1444-1447. http://dx.doi.org/10.1190/1.1437872
[9] 甘利灯, 姚逢昌, 邹才能, 等. 水驱四维地震技术可行性研究及其盲区[J]. 勘探地球物理进展, 2003, 26(1): 24- 29.
[10] 云美厚, 丁伟, 杨长春. 油藏水驱开采时移地震监测岩石物理基础测量[J]. 地球物理学报, 2006, 49(63): 1813- 1818.
[11] 甘利灯. 四维地震技术及其在水驱油藏监测中的应用[D]: [博士学位论文]. 北京: 中国地质大学, 2002.