[1]
|
Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T. and Sheng, P. (2000) Locally Resonant Sonic Materials. Science, 289, 1734-1736. http://dx.doi.org/10.1126/science.289.5485.1734
|
[2]
|
Li, J. and Chan, C. (2004) Double-Negative Acoustic Metamaterial. Physical Review E, 70, Article ID: 055602.
http://dx.doi.org/10.1103/PhysRevE.70.055602
|
[3]
|
Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C. and Zhang, X. (2006) Ultrasonic Metamaterials with Negative Modulus. Nature Materials, 5, 452-456. http://dx.doi.org/10.1038/nmat1644
|
[4]
|
Yang, Z., Mei, J., Yang, M., Chan, N. and Sheng, P. (2008) Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass. Physical Review Letters, 101, Article ID: 204301. http://dx.doi.org/10.1103/PhysRevLett.101.204301
|
[5]
|
Pierre, J., Dollet, B. and Leroy, V. (2014) Resonant Acoustic Propagation and Negative Density in Liquid Foams. Physical Review Letters, 112, Article ID: 148307. http://dx.doi.org/10.1103/PhysRevLett.112.148307
|
[6]
|
Wu, Y., Lai, Y. and Zhang, Z. (2011) Elastic Metamaterials with Simultaneously Negative Effective Shear Modulus and Mass Density. Physical Review Letters, 107, Article ID: 105506.
http://dx.doi.org/10.1103/PhysRevLett.107.105506
|
[7]
|
Ding, Y., Liu, Z., Qiu, C. and Shi, J. (2007) Metamaterial with Simultaneously Negative Bulk Modulus and Mass Density. Physical Review Letters, 99, Article ID: 093904. http://dx.doi.org/10.1103/PhysRevLett.99.093904
|
[8]
|
Lee, S.H., Park, C.M., Seo, Y.M., Wang, Z.G. and Kim, C.K. (2010) Composite Acoustic Medium with Simultaneously Negative Density and Modulus. Physical Review Letters, 104, Article ID: 054301.
http://dx.doi.org/10.1103/PhysRevLett.104.054301
|
[9]
|
Yang, M., Ma, G., Yang, Z. and Sheng, P. (2013) Coupled Membranes with Doubly Negative Mass Density and Bulk Modulus. Physical Review Letters, 110, Article ID: 134301. http://dx.doi.org/10.1103/PhysRevLett.110.134301
|
[10]
|
Lai, Y., Wu, Y., Sheng, P. and Zhang, Z.Q. (2011) Hybrid Elastic Solids. Nature Materials, 10, 620-624.
http://dx.doi.org/10.1038/nmat3043
|
[11]
|
Liang, Z. and Li, J. (2012) Extreme Acoustic Metamaterial by Coiling up Space. Physical Review Letters, 108, Article ID: 114301. http://dx.doi.org/10.1103/PhysRevLett.108.114301
|
[12]
|
Li, J., Fok, L., Yin, X., Bartal, G. and Zhang, X. (2009) Experimental Demonstration of an Acoustic Magnifying Hyperlens. Nature Materials, 8, 931-934. http://dx.doi.org/10.1038/nmat2561
|
[13]
|
Ao, X. and Chan, C.T. (2008) Far-Field Image Magnification for Acoustic Waves Using Anisotropic Acoustic Metamaterials. Physical Review E, 77, Article ID: 025601(R). http://dx.doi.org/10.1103/PhysRevE.77.025601
|
[14]
|
García-Chocano, V.M., Christensen, J. and Sánchez-Dehesa, J. (2014) Negative Refraction and Energy Funneling by Hyperbolic Materials: An Experimental Demonstration in Acoustics. Physical Review Letters, 112, Article ID: 144301. http://dx.doi.org/10.1103/PhysRevLett.112.144301
|
[15]
|
Zhu, J., Christensen, J., Jung, J., Martin-Moreno, L., Yin, X., Fok, L., Zhang, X. and Garcia-Vidal, F.J. (2010) A Holey-Structured Metamaterial for Acoustic Deep-Subwavelength Imaging. Nature Physics, 7, 52-55.
http://dx.doi.org/10.1038/nphys1804
|
[16]
|
Milton, G.W., Briane, M. and Willis, J.R. (2006) On Cloaking for Elasticity and Physical Equations with a Transformation Invariant Form. New Journal of Physics, 8, 248-248. http://dx.doi.org/10.1088/1367-2630/8/10/248
|
[17]
|
Chen, H. and Chan, C.T. (2007) Acoustic Cloaking in Three Dimensions Using Acoustic Metamaterials. Applied Physics Letters, 91, Article ID: 183518. http://dx.doi.org/10.1063/1.2803315
|
[18]
|
Farhat, M., Enoch, S., Guenneau, S. and Movchan, A. (2008) Broadband Cylindrical Acoustic Cloak for Linear Surface Waves in a Fluid. Physical Review Letters, 101, Article ID: 134501.
http://dx.doi.org/10.1103/PhysRevLett.101.134501
|
[19]
|
Cummer, S., Popa, B., Schurig, D., Smith, D., Pendry, J., Rahm, M. and Starr, A. (2008) Scattering Theory Derivation of a 3D Acoustic Cloaking Shell. Physical Review Letters, 100, Article ID: 024301.
http://dx.doi.org/10.1103/PhysRevLett.100.024301
|
[20]
|
Farhat, M., Guenneau, S. and Enoch, S. (2009) Ultrabroadband Elastic Cloaking in Thin Plates. Physical Review Letters, 103, Article ID: 024301. http://dx.doi.org/10.1103/PhysRevLett.103.024301
|
[21]
|
Zhu, X., Liang, B., Kan, W., Zou, X. and Cheng, J. (2011) Acoustic Cloaking by a Superlens with Single-Negative Materials. Physical Review Letters, 106, Article ID: 014301. http://dx.doi.org/10.1103/PhysRevLett.106.014301
|
[22]
|
Zhang, S., Xia, C. and Fang, N. (2011) Broadband Acoustic Cloak for Ultrasound Waves. Physical Review Letters, 106, Article ID: 024301. http://dx.doi.org/10.1103/PhysRevLett.106.024301
|
[23]
|
Popa, B., Zigoneanu, L. and Cummer, S.A. (2011) Experimental Acoustic Ground Cloak in Air. Physical Review Letters, 106, Article ID: 253901. http://dx.doi.org/10.1103/PhysRevLett.106.253901
|
[24]
|
Stenger, N., Wilhelm, M. and Wegener, M. (2012) Experiments on Elastic Cloaking in Thin Plates. Physical Review Letters, 108, Article ID: 014301. http://dx.doi.org/10.1103/PhysRevLett.108.014301
|
[25]
|
Buckmann, T., Thiel, M., Kadic, M., Schittny, R. and Wegener, M. (2014) An Elasto-Mechanical Unfeelability Cloak Made of Pentamode Metamaterials. Nature Communications, 5, Article No. 4130.
http://dx.doi.org/10.1038/ncomms5130
|
[26]
|
Sanchis, L., García-Chocano, V., Llopis-Pontiveros, R., Climente, A., Martínez-Pastor, J., Cervera, F. and Sánchez- Dehesa, J. (2013) Three-Dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere. Physical Review Letters, 110, Article ID: 124301. http://dx.doi.org/10.1103/PhysRevLett.110.124301
|
[27]
|
Zigoneanu, L., Popa, B.I. and Cummer, S.A. (2014) Three-Dimensional Broadband Omnidirectional Acoustic Ground Cloak. Nature Materials, 13, 352-355. http://dx.doi.org/10.1038/nmat3901
|
[28]
|
Mei, J., Ma, G., Yang, M., Yang, Z., Wen, W. and Sheng, P. (2012) Dark Acoustic Metamaterials as Super Absorbers for Low-Frequency Sound. Nature Communications, 3, Article No. 756. http://dx.doi.org/10.1038/ncomms1758
|
[29]
|
Ma, G., Yang, M., Xiao, S., Yang, Z. and Sheng, P. (2014) Acoustic Metasurface with Hybrid Resonances. Nature Materials, 13, 873-878. http://dx.doi.org/10.1038/nmat3994
|
[30]
|
Yang, M., Meng, C., Fu, C., Li, Y., Yang, Z. and Sheng, P. (2015) Subwavelength Total Acoustic Absorption with Degenerate Resonators. Applied Physics Letters, 107, Article ID: 104104. http://dx.doi.org/10.1063/1.4930944
|
[31]
|
Duan, Y., Luo, J., Wang, G., Hang, Z.H., Hou, B., Li, J., Sheng, P. and Lai, Y. (2015) Theoretical Requirements for Broadband Perfect Absorption of Acoustic Waves by Ultra-Thin Elastic Meta-Films. Scientific Reports, 5, Article No. 12139. http://dx.doi.org/10.1038/srep12139
|
[32]
|
Song, J.Z., Bai, P., Hang, Z.H. and Lai, Y. (2014) Acoustic Coherent Perfect Absorbers. New Journal of Physics, 16, Article ID: 033026. http://dx.doi.org/10.1088/1367-2630/16/3/033026
|
[33]
|
Wei, P., Croënne, C., Tak Chu, S. and Li, J. (2014) Symmetrical and Anti-Symmetrical Coherent Perfect Absorption for Acoustic Waves. Applied Physics Letters, 104, Article ID: 121902. http://dx.doi.org/10.1063/1.4869462
|
[34]
|
Christensen, J. and Willatzen, M. (2014) Acoustic Wave Propagation and Stochastic Effects in Metamaterial absorberS. Applied Physics Letters, 105, Article ID: 043508. http://dx.doi.org/10.1063/1.4892011
|
[35]
|
Christensen, J., Romero-Garcia, V., Pico, R., Cebrecos, A., de Abajo, F.J., Mortensen, N.A., Willatzen, M. and Sanchez-Morcillo, V.J. (2014) Extraordinary Absorption of Sound in Porous Lamella-Crystals. Scientific Reports, 4, Article No. 4674. http://dx.doi.org/10.1038/srep04674
|
[36]
|
Li, R., Zhu, X., Liang, B., Li, Y., Zou, X. and Cheng, J. (2011) A Broadband Acoustic Omnidirectional Absorber Comprising Positive-Index Materials. Applied Physics Letters, 99, Article ID: 193507.
http://dx.doi.org/10.1063/1.3659690
|
[37]
|
Wei, Q., Cheng, Y. and Liu, X.J. (2012) Acoustic Omnidirectional Superabsorber with Arbitrary Contour. Applied Physics Letters, 100, Article ID: 094105. http://dx.doi.org/10.1063/1.3690899
|
[38]
|
Climente, A., Torrent, D. and Sánchez-Dehesa, J. (2012) Omnidirectional Broadband Acoustic Absorber Based on Metamaterials. Applied Physics Letters, 100, Article ID: 144103. http://dx.doi.org/10.1063/1.3701611
|
[39]
|
Naify, C.J., Martin, T.P., Layman, C.N., Nicholas, M., Thangawng, A.L., Calvo, D.C. and Orris, G.J. (2014) Underwater Acoustic Omnidirectional Absorber. Applied Physics Letters, 104, Article ID: 073505.
http://dx.doi.org/10.1063/1.4865480
|
[40]
|
Romero-García, V., Theocharis, G., Richoux, O., Merkel, A., Tournat, V. and Pagneux, V. (2016) Perfect and Broadband Acoustic Absorption by Critically Coupled Sub-Wavelength Resonators. Scientific Reports, 6, Article No. 19519.
http://dx.doi.org/10.1038/srep19519
|
[41]
|
Longhi, S. (2010) PT-Symmetric Laser Absorber. Physical Review A, 82, Article ID: 031801(R).
http://dx.doi.org/10.1103/PhysRevA.82.031801
|
[42]
|
Chong, Y.D., Ge, L., Cao, H. and Stone, A.D. (2010) Coherent Perfect Absorbers: Time-Reversed Lasers. Physical Review Letters, 105, Article ID: 053901. http://dx.doi.org/10.1103/PhysRevLett.105.053901
|