湖泊古盐度重建研究进展
Research Progress on Reconstruction of Lake Palaeo-Salinity
DOI: 10.12677/GSER.2016.52011, PDF, HTML, XML, 下载: 2,232  浏览: 7,834  科研立项经费支持
作者: 张江燕, 郑玉萍, 宋瑞卿:福建师范大学地理研究所,福建 福州
关键词: 古盐度重建介形类壳体硼元素法沉积磷酸盐法Palaeo-Salinity Reconstruction Ostracode Shells Boron Element Method Sedimentary Phosphate Method
摘要: 湖泊是陆地生态系统的节点,湖泊盐度是反应湖泊生态系统变化的重要参数,因此重建湖泊古盐度对于研究古生态、反演湖泊演化历史非常重要。目前应用广泛的重建湖泊古盐度方法主要有介形类壳体的地球化学元素比值法,硼元素法,沉积磷酸盐法,部分研究显示一些生物指标也可以用来定量的分析古盐度。虽然我们认为古沉积环境是一个封闭的系统,但仍不可避免地会与周围各个环境因子发生作用,促使古环境信息的提取更为困难,为了使重建的古盐度更加接近于当时发生时的状态,应尽可能的采用多指标方法,以便得到一个更接近于真实环境的值。
Abstract: Lake is the node of terrestrial ecosystems, and its salinity is an important parameter to reflect the change of lake ecosystem, so it is very important to reconstruct the palaeo-salinity and reveal the evolution of the lake. Currently, the method which is widely used to reconstruct lake paleo-salinity is geochemical characteristics of chemical elements from ostracode shells, boron element method and sedimentary phosphate method; some studies have shown that some biological indicators can also be used to quantitatively analyze paleo-salinity. Although we believe that the palaeo sedimen- tary environment is a closed system, it is still inevitable that it interacted with various environ-mental factors around, which make it hard to obtain information of paleo environment. In order to reconstruct the palaeo-salinity more correctly, we use multi-index method to get a closer to the value of the real environment.
文章引用:张江燕, 郑玉萍, 宋瑞卿. 湖泊古盐度重建研究进展[J]. 地理科学研究, 2016, 5(2): 92-104. http://dx.doi.org/10.12677/GSER.2016.52011

参考文献

[1] Price, C.T.W. and Norman, B. (1963) Departure Curves for Computing Paleosalinity from Boron in Illites and Shales. Aapg Bulletin, 47, 833-841.
[2] 张虎才. 元素表生地球化学特征及理论基础[M]. 兰州: 兰州大学出版社, 1997: 1-223.
[3] 沈吉, 薜滨, 吴敬禄. 湖泊沉积与环境演化[M]. 北京: 科学出版社, 2010: 1-342.
[4] Verschuren, D., Laird, K.R. and Cumming, B.F. (2000) Rainfall and Drought in Equatorial East Africa during the Past 1,100 Years. Nature, 403, 410-414.
http://dx.doi.org/10.1038/35000179
[5] Smol, J.P. and Cumming, B.F. (2000) Tracking Long-Term Changes in Climate Using Algal Indicators in Lake Sediments. Journal of Phycology, 36, 986-1011.
http://dx.doi.org/10.1046/j.1529-8817.2000.00049.x
[6] Fritz, S.C. (1990) Twentieth-Century Salinity and Wa-ter-Level Fluctuations in Devils Lake, North Dakota: Test of a Diatom-Based Transfer Function. Limnologys & Soceanography, 35, 1771-1781.
[7] 赵泉鸿, 戴中宁. 活介形虫壳体中Mg/Ca比值与温度和盐度关系的试验 [J]. 科学通报, 1994, 39(15): 1409-1412.
[8] 沈吉, 曹建廷. 岱海湖水盐度与氧同位素定量关系的建立[J]. 第四纪研究, 2000, 20(2): 211.
[9] Deckker, P.D. and Forester, R.M. (1988) The Use of Ostracods to Reconstruct Continental Palaeoenvironmental Records. In: De Deckker, P., Colin, J.P. and Prepouquet, J.P., Eds., Ostracoda in the Earth Sci-ences, Elsevier, Amsterdam, 175-199.
[10] Holmes, J.A. (1997) Recent Non-Marine Ostracoda from Jamaica, West Indies. Journal of Micropalaeontology, 16, 137-143.
http://dx.doi.org/10.1144/jm.16.2.137
[11] 杨留法. 试论介形虫生存的主要条件——以我国现代湖泊为例[J]. 中国科学, 1986(11): 1219-1224.
[12] Mischke, S., Herzschuh, U., Massmann, G., et al. (2007) An Ostracod-Conductivity Transfer Function for Tibetan Lakes. Journal of Paleolim-nology, 38, 509-524.
http://dx.doi.org/10.1007/s10933-006-9087-5
[13] Sun, Z. and Zhan, S. (1993) Areal Dis-tribution of Quaternary Ostracod Assemblages and Its Main Controlling Factor in Chaidamu Basin, Nw China. Acta Petrolei Sinica, 14, 35-41.
[14] 杨藩, 孙镇城, 张永华, 等. 青海柴达木盆地第四纪介形类属Ilyocypris壳面瘤状装饰的分类意义[J]. 微体古生物学报, 2002, 19(1): 15-32.
[15] 董宁, 杨平, 袁秀君, 等. 柴达木盆地察尔汗地区第四纪古生物组合与沉积环境[J]. 新疆石油地质, 2008, 29(1): 57-60.
[16] Smith, A.J. (1993) Lacustrine Ostra-codes as Hydrochemical Indicators in Lakes of the North-Central United States. Journal of Paleolimnology, 8, 121-134.
http://dx.doi.org/10.1007/BF00119785
[17] 李军, 余俊清. 湖相介形类壳体地球化学在环境变化研究中的应用与进展[J]. 湖泊科学, 2001, 13(4): 367-375.
[18] De Deckker, P., Chivas, A.R., Shelley, J.M.G. and Torgersen, T. (1988) Ostracod Shell Chemistry: A New Palaeoenvironmental Indicator Applied to a Regressive/Transgressive Record from the Gulf of Carpentaria, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 66, 231-241.
http://dx.doi.org/10.1016/0031-0182(88)90201-5
[19] Turekian, K.K. (1964) The Marine Geochemistry of Stron-tium. Geochimica et Cosmochimica Acta, 28, 1479-1496.
http://dx.doi.org/10.1016/0016-7037(64)90163-2
[20] Chivas, A.R., De Deckker, P. and Shelley, J.M.G. (1985) Strontium Content of Ostracods Indicates Lacustrine Palaeosalinity. Nature, 316, 251-253.
http://dx.doi.org/10.1038/316251a0
[21] Chivas, A.R., De Deckker, P. and Shelley, J.M.G. (1986) Magnesium Content of Non-Marine Ostracod Shells: A New Palaeosalinometer and Palaeothermometer. Palaeogeography, Palae-oclimatology, Palaeoecology, 54, 43-61.
http://dx.doi.org/10.1016/0031-0182(86)90117-3
[22] Chivas, A.R., De Deckker, P. and Shelley, J.M.G. (1986) Magnesium and Strontium in Non-Marine Ostracod Shells as Indicators of Palaeosalinity and Palaeotemperature. Hy-drobiologia, 143, 135-142.
http://dx.doi.org/10.1007/BF00026656
[23] Chivas, A.R., De Deckker, P., Cali, J.A., Chapman, A., Kiss, E. and Shelley, J.M.G. (1993) Coupled Stable-Isotope and Trace-Element Measurements of Lacustrine Carbonates as Paleo-climatic Indicators. In: Swart, P.K., Lohmann, K.C., McKcnzie, J. and Savin, S., Eds., Climate Change in Continental Isotopic Records, American Geophysical Union, Washington DC, 113-121.
[24] Williams, W.D. (1966) The Rela-tionship between Salinity and Sr/Ca in the Lake Water. Australian Journal of Marine & Freshwater Research, 17, 169-176.
[25] 张彭熹, 张保珍. 青海湖全新世以来古环境参数的研究[J]. 第四纪研究, 1994 (3): 225-228.
[26] 曹建廷, 沈吉, 王苏民, 朱育新. 内蒙古岱海地区小冰期气候演化特征的地球化学记录[J]. 地球化学, 2001, 30(3): 231-235.
[27] 张恩楼, 沈吉, 王苏民, 等. 近0.9 ka来青海湖湖水盐度的定量恢复[J]. 科学通报, 2004, 49(7): 697-701.
[28] 沈吉, Matsu, R. 内蒙古岱海古盐度定量复原初探[J]. 科学通报, 2000, 45(17): 1885-1889.
[29] Gasse, F., Fontes, J.C., Plaziat, J.C., et al. (1987) Biological Remains, Geochemistry and Stable Iso-topes for the Reconstruction of Environmental and Hydrological Changes in the Holocene Lakes from North Sahara. Palaeogeography, Palaeoclimatology, Palaeoecology, 60, 1-46.
http://dx.doi.org/10.1016/0031-0182(87)90022-8
[30] Engstrom, D.R. and Nelson, S.R. (1991) Paleosalinity from Trace Metals in Fossil Ostracodes Compared with Observational Records at Devils Lake, North Dakota, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 83, 295- 312.
http://dx.doi.org/10.1016/0031-0182(91)90057-X
[31] Bridgwater, N.D., Holmes, J.A. and O’hara, S.L. (1999) Complex Controls on the Trace-Element Chemistry of Non- Marine Ostracods: An Example from Lake Patzcuaro, Central Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology, 148, 117-131.
http://dx.doi.org/10.1016/S0031-0182(98)00179-5
[32] Holmes, J.A. (1996) Trace-Element and Stable-Isotope Geochemistry of Non-Marine Ostracod Shells in Quaternary Palaeoenvironmental Reconstruction. Journal of Paleo-limnology, 15, 223-235.
http://dx.doi.org/10.1007/BF00213042
[33] Anadón, P., Utrilla, R. and Julià, R. (1994) Palaeoenvironmental Reconstruction of a Pleistocene Lacustrine Sequence from Faunal Assemblages and Ostracode Shell Geochemistry, Baza Basin, SE Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 111, 191-205.
http://dx.doi.org/10.1016/0031-0182(94)90062-0
[34] 张彭熹, 张保珍, 杨文博. 青海湖冰后期水体环境的演化[J]. 沉积学报, 1988, 6(2): 1-14.
[35] 沈渭洲, 黄耀生. 稳定同位素地质[M]. 北京: 原子能出版社, 1987: 1-56.
[36] 郑永飞, 陈江峰. 稳定同位素地球化学[M]. 北京: 科学出版社, 2000: 1-64.
[37] Epstein, S. and Mayeda, T. (1953) Variation of O18 Content of Waters from Natural Sources. Geochimica et Cosmochimica Acta, 4, 213-224.
http://dx.doi.org/10.1016/0016-7037(53)90051-9
[38] Schopf, T.J.M. 古海洋学[M]. 仇祥华, 朱西岭, 译. 北京: 海洋出版社, 1984: 200-201.
[39] Clayton, R.N. and Degens, E.T. (1959) Use of Carbon Isotope Analyses of Carbonates for Differentiating Fresh-Water and Marine Sediments. AAPG Bulletin, 43, 890-897.
[40] Keith, M.L. and Weber, J.N. (1964) Carbon and Oxygen Isotopic Composition of Selected Limestones and Fossils. Geochimica et Cosmochimica Acta, 28, 1787-1816.
http://dx.doi.org/10.1016/0016-7037(64)90022-5
[41] Seward, D. (1978) Palaeosalinities and Palaeotemperatures from Carbon and Oxygen Isotopes of Carbonate Shells in Three Quaternary Formations, Wanganui Basin, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology, 23, 47-55.
http://dx.doi.org/10.1016/0031-0182(78)90081-0
[42] 沙庆安, 潘正莆. 海南岛小东海全新世——现代礁岩的成岩作用[J]. 石油与天然气地质, 1981, 2(4): 321-327.
[43] 宋明水. 东营凹陷南斜坡沙四段沉积环境的地球化学特征[J]. 矿物岩石, 2005, 25(1): 67-73.
[44] 张秀莲. 碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系[J]. 沉积学报, 1985, 3(4): 17-30.
[45] Keith, M.H. and Weber, J.N. (1964) Isotopic Composition and Environmental Classification of Selected Limestones and Fossils. Geochimica et Cosmochimica Acta, 28, 45-56.
[46] Mackenzie, F.T. (1975) Sedimentary Cycling and the Evolution of Sea Water. In: Tongiorgi, E., Ed., Chemical Oceanography, 2nd Edition, 25-30.
[47] 韩吟文. 地球化学[M]. 北京: 地质出版社, 2003: 1-198.
[48] Hoefs, J. 稳定同位素地球化学[M]. 第六版. 北京: 地质出版社, 2012: 1-67.
[49] Frederickson, A.F. and Reynolds Jr., R.C. (1959) Geochemical Method for Determining Paleosalinity. Clays and Clay Minerals, 8, 203-213.
http://dx.doi.org/10.1346/CCMN.1959.0080119
[50] Adams, T.D., Haynes, J.R. and Walker, C.T. (1965) Boron in Holocene Illites of the Dovey Estuary, Wales, and Its Relationship to Palaeosalinity in Cyclothems. Sedimentology, 4, 189-195.
http://dx.doi.org/10.1111/j.1365-3091.1965.tb01288.x
[51] 周仰康, 何锦文, 王子玉. 硼作为古盐度指标的应用[C]//中国科学院. 沉积学和有机地球化学学术会议论文选集. 北京: 科学出版社, 1984: 53-58.
[52] 李成凤, 肖继风. 用微量元素研究胜利油田东营盆地沙河街组的古盐度[J]. 沉积学报, 1988(4): 100-107.
[53] Walker, C.T. (1968) Evaluation of Boron as a Paleosalinity Indicator and Its Application to Offshore Prospects. AAPG Bulletin, 52, 751-766.
[54] Couch, E.L. (1971) Calculation of Paleosalinities from Boron and Clay Mineral Data. AAPG Bulletin, 55, 1829-1839.
[55] 伊海生, 时志强, 朱迎堂, 孙瑕, 马雪, 达雪娟. 应用古盐度指标重建过去湖平面变化历史[EB/OL]. 北京: 中国科技论文在线. http://www.paper.edu.cn/releasepaper/content/200805-88, 2008-05-05.
[56] 郑荣才, 柳梅青. 鄂尔多斯盆地长6油层组古盐度研究[J]. 石油与天然气地质, 1999(1): 22-27.
[57] 赵永胜, 宋振亚, 温景萍, 孙庭金. 保山盆地湖相泥岩微量元素分布与古盐度定量评价[J]. 海洋与湖沼, 1998, 29(4): 409-415.
[58] 王子玉, 姚琬圭, 陈晓明. 沉积磷酸盐法的古盐度意义[J]. 沉积学报, 1989(4): 113-119.
[59] 蓝先洪. 珠江三角洲晚第四纪沉积特征[J]. 沉积学报, 1996, (2): 155-162.
[60] Nelson, B.W. (1967) Sedimentary Phosphate Method for Estimating Paleosalinities. Science, 158, 917-920.
http://dx.doi.org/10.1126/science.158.3803.917
[61] Meyerson, A.L. (1972) Pollen and Paleosalinity Analyses from a Holocene Tidal Marsh Sequence, Cape May County, New Jersey. Marine Geology, 12, 335-357.
http://dx.doi.org/10.1016/0025-3227(72)90033-3
[62] 蓝先洪. 珠江口现代沉积物中沉积磷酸盐的研究[J]. 海洋与湖沼, 1989, 20(5): 480-487.
[63] 蓝先洪, 马道修, 徐明广, 周清伟, 张光威. 珠江三角洲若干地球化学标志及指相意义[J]. 海洋地质与第四纪地质, 1987, 7(1): 39-49.
[64] 王子玉, 程安进. 太湖全新世沉积物的古盐度指标及其环境意义[J]. 地层学杂志, 1994, 18(3): 196-202.