LiNbO3晶体中非相干空间亮孤子的动态演化特性
Dynamics Evolution Characteristic of Incoherent Bright Spatial Solitons in LiNbO3 Crystal
DOI: 10.12677/APP.2016.68023, PDF, HTML, XML, 下载: 1,709  浏览: 3,152  科研立项经费支持
作者: 霍广文, 陈 恒:西京学院控制工程学院,陕西 西安;张美志*:西安邮电大学电子工程学院,陕西 西安
关键词: 空间孤子自散焦向自聚焦转换空间演化相干密度法Spatial Solitons Transition of Self-Defocusing to Self-Focusing Spatial Evolution Coherent Density Approach
摘要: 本文理论研究了自散焦LiNbO3晶体中非相干亮光伏孤子的形成机理及其动态演化特性。研究发现,通过加载背景光的方法能够实现LiNbO3晶体由自散焦向自聚焦的转换并形成亮空间孤子。以LiNbO3晶体为例,给出了折射率空间分布与光伏常数比K 之间的关系,给出了亮光伏孤子的存在曲线。进一步采用相干密度法理论分析了非相干亮光伏孤子在LiNbO3晶体中的传输特性,并利用分步傅里叶算法数值模拟了K 值对孤子形成的影响。此外,非相干亮光伏孤子的形成还受强度比值 r T 和光源角功率谱宽度θ0 的影响。通过加载背景光的方法可以实现无偏压条件下亮暗孤子的切换,这对基于孤子的全光器件研究提供可靠性参考。
Abstract: We theoretically study the formation mechanism and dynamic evolution characteristics of inco-herent bright photovoltaic (PV) solitons in self-defocusing LiNbO3 crystal. It is found that the transition of self-defocusing to self-focusing can be realized by adding a background beam in LiNbO3 crystal, and bright spatial solitons generate under suitable conditions. Taking LiNbO3 as an example, we give the relationship between the spatial distribution of refractive index and the ratio of PV constant K . We then calculate the existence curve of bright PV solitons. Furthermore, we analyze the propagation characteristics of incoherent bright PV solitons using coherent density approach, and simulate how the soliton formation is influenced by K values with split-step Fourier method. The bright incoherent PV solitons are affected by intensity ratios r T and the width of source angular power spectrum θ0 . It realizes the switching of bright and dark solitons by adding a background beam without extra bias voltage, which provides useful reference for all optical devices design based on solitons.
文章引用:霍广文, 陈恒, 张美志. LiNbO3晶体中非相干空间亮孤子的动态演化特性[J]. 应用物理, 2016, 6(8): 175-183. http://dx.doi.org/10.12677/APP.2016.68023

参考文献

[1] Morin, M., Dree, G., Salamo, G. and Segev, M. (1995) Waveguides Formed by Quasi-Steady-State Photorefractive Spatial Solitons. Optics Letter, 20, 2066-2068. http://dx.doi.org/10.1364/OL.20.002066
[2] Hao, L.L., Wang, Q. and Hou, C.F. (2014) Spatial Solitons in Biased Photorefractive Materials with both the Linear and Quadratic Electro-Optic Effects. Journal of Modern Optics, 61, 1236-1245. http://dx.doi.org/10.1080/09500340.2014.928379
[3] Segev, M., Valley, G.C., Bashaw, M.C., Taya, M. and Fejer, M.M. (1997) Photovoltaic Spatial Solitons. Journal of the Optical Society America B, 14, 1772-1781. http://dx.doi.org/10.1364/JOSAB.14.001772
[4] She, W.L., Lee, K. and Lee, W. (1999) Observation of Two-Dimensional Bright Photovoltaic Spatial Solitons. Physical Review Letters, 83, 3182-3185. http://dx.doi.org/10.1103/PhysRevLett.83.3182
[5] Taya, M., Bashaw, M.C., Fejer, M.M., Segev, M. and Valley, G.C. (1995) Observation of Dark Photovoltaic Spatial Solitons. Physical Review A, 52, 3095-3100. http://dx.doi.org/10.1103/PhysRevA.52.3095
[6] Zhang, M.Z., Lu, K.Q., Cheng, G.H., Zhang, L., Kang, Y.-F. and Zhang, Y.-P. (2008) One-Dimensional Waveguides Induced by Photovoltaic Dark Spatial Solitons of Partially Spatially Incoherent Light. Acta Photonica Sinica, 37, 1942-1946.
[7] Lan, S., DelRe, E., Chen, Z.G., Shih, M.F. and Segev, M. (1999) Directional Coupler with Soliton-Induced Waveguides. Optics Letter, 24, 475-477. http://dx.doi.org/10.1364/OL.24.000475
[8] Lu, K.Q., Zhao, W., Yang, Y.Y., et al. (2006) Soliton-Induced Waveguides in Photorefractive Photovoltaic Materials. Journal of Modern Optics, 53, 2137-2151. http://dx.doi.org/10.1080/09500340600809145
[9] Anastassiou, C., Shih, M.F., Mitchell, M., Chen, Z.G. and Segev, M. (1998) Optically Induced Photovoltaic Self-Defocusing-to-Self-Fo- cusing Transition. Optics Letter, 23, 924-926. http://dx.doi.org/10.1364/OL.23.000924
[10] Liu, S.M., Wang, D.Y., Zhao, H.E., et al. (2002) The Dynamic Conversion from Self-Defocusing to Self-Focusing and the Phase Conjugate Bright Spatial Soliton. Acta Physica Sinica, 51, 2761-2766.
[11] Wang, D.Y., Liu, S.M., Chen, X.H., et al. (2003) The Influence and Control of Incoherent Irradiation on Photorefractive Nonlinearity of LiNbO3:Fe Crystal. Acta Physica Sinica, 52, 395-400.
[12] She, W.L., Xu, C.C., Guo, B. and Lee, W.-K. (2006) Formation of Photovoltaic Bright Spatial Soliton in Photorefractive LiNbO3 Crystal by a Defocused Laser Beam Induced by a Background Laser Beam. Journal of the Optical Society America B, 23, 2121-2126. http://dx.doi.org/10.1364/JOSAB.23.002121
[13] Zhang, M.Z., Lu, K.Q., Cheng, G.H., et al. (2010) One-Dimensional Steady-State Bright Photovoltaic Solitons in LiNbO3:Fe Crystal with Back Ground Illumination. Optik, 121, 575-580. http://dx.doi.org/10.1016/j.ijleo.2008.09.020
[14] Zhang, M.Z., Huo, G.W., Zhang, Y.Q., Kang, Y. and Duan, Z. (2012) Modulation Instability of Bright Photovoltaic Solitons on a Partially Incoherent Background. Laser Physics, 22, 1295-1300. http://dx.doi.org/10.1134/S1054660X12080178
[15] Christodoulides, D.N., Coskun, T., Mitchell, M. and Segev, M. (1997) Theory of Incoherent Self-Focusing in Biased Photorefractive Media. Physical Review Letters, 78, 646-649. http://dx.doi.org/10.1103/PhysRevLett.78.646
[16] Cohen, O., Buljan, H., Schwartaz, T., Fleischer, J.W. and Segev, M. (2006) Incoherent Solitons in Instantaneous Nonlocal Nonlinear Media. Physical Review E, 73, 015601. http://dx.doi.org/10.1103/PhysRevE.73.015601