基于数学形态学的直流接地极引线C型行波故障测距
C Type Traveling Wave Fault Location for HVDC Grounding Lines Based on Mathematical Morphology
DOI: 10.12677/SG.2016.65028, PDF, HTML, XML, 下载: 1,758  浏览: 3,320 
作者: 任鹏飞, 谭博学, 刘 辉:山东理工大学,电气与电子工程学院,山东 淄博
关键词: 直流接地极引线数学形态学脉冲信号故障测距The DC Grounding Wire Mathematical Morphology Pulse Signal Fault Location
摘要: 本文在介绍C型行波测距原理和数学形态学理论的基础上,根据脉冲信号在接地极线路上的传播特性,提出了一种基于数学形态学的C型行波故障测距方法,该方法首先对脉冲信号在线路上的传播过程进行模量分离,再根据形态学算法进行滤波,并利用梯度变换分离出正反向行波浪涌,不仅具有一定的抗干扰性,而且能准确地识别第一个反射脉冲到达测量点的时刻。通过PSCAD仿真验证和MATLAB图形处理表明,该方法是可行的,且有利于提高高压直流接地极引线故障测距的可靠性和准确性。
Abstract: On the basis of introducing the principle of C type traveling wave fault location and mathematical morphology theory, this paper proposes a C type traveling wave fault location method based on mathematical morphology according to the propagation characteristics of the pulse signal in the grounding line. Firstly, this method carries on modulus separation of propagation process of the pulse signal on line, then, it uses the morphological algorithm for wave filtering, and the forward and backward waves are separated by the gradient transform. This method not only has certain anti-interference ability, but also can accurately distinguish the moment of the first reflection pulse reaching to the measuring point. Results show that the method is not only feasible but also helpful to improve the reliability and accuracy of the fault location for high voltage DC grounding wire through simulation of PSCAD and graphics processing of MATLAB.
文章引用:任鹏飞, 谭博学, 刘辉. 基于数学形态学的直流接地极引线C型行波故障测距[J]. 智能电网, 2016, 6(5): 253-261. http://dx.doi.org/10.12677/SG.2016.65028

参考文献

[1] 陈平. 输电线路现代行波故障测距及其应用研究[D]: [博士学位论文]. 西安: 西安交通大学, 2003.
[2] 钟小垒. 基于行波原理的直流输电系统接地极引线故障测距[D]: [硕士学位论文]. 淄博: 山东理工大学, 2012.
[3] 王奎鑫, 陈平, 祝成, 等. 输电线路组合行波测距方法研究[J]. 电力系统保护与控制, 2012, 40(15): 82-86.
[4] 郝洪民, 陈平, 梁凤强, 等. 直流接地极线路组合行波故障测距方法[J]. 国网技术学院学报, 2015, 18(4): 6-10.
[5] 蔡永梁, 张楠, 冯鸫, 等. 基于行波原理直流输电系统接地极线路故障测距系统设计[J]. 南方电网技术, 2011, 5(2): 48-50.
[6] 迟震. 脉冲反射法电缆综合故障定位研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨理工大学, 2013.
[7] 黄雄, 王志华, 尹项根, 等. 高压输电线路行波测距的行波波速确定方法[J]. 电网技术. 2004, 28(19): 34-37.
[8] 崔屹. 图形处理与分析–数学形态学方法及应用[M]. 北京: 科学出版社, 2000.
[9] 张怿宁, 王彩芝, 李京, 等. 基于数学形态学的直流接地极线路单端行波故障测距[J]. 电力系统及其自动化学报. 2016, 28(1): 74-78.
[10] 孙学茜, 陈平, 李书领, 等. 基于数学形态学的HVDC线路单端行波测距算法[J]. 山东理工大学学报(自然科学版), 2011, 25(4): 104-107.
[11] Ha, S.G., Yu, I.K. and Park, M. (2007) PSCAD/EMTDC-Based Simulation of Wind Power Genera-tion System. Renewable Energy, 32, 105-117.
[12] 李保生. 基于时域脉冲反射原理的电线电缆精确测长技术研究[D]: [硕士学位论文]. 西安: 西安电子科技大学, 2010.