锆钛酸锶钡陶瓷的电阻开关效应
The Resistance Switching Effect in (BaxSr1-x)(Zr0.1Ti0.9)O3 Ceramics
DOI: 10.12677/APP.2017.73009, PDF, HTML, XML, 下载: 1,675  浏览: 3,068  国家自然科学基金支持
作者: 朱 智, 唐新桂*:广东工业大学,物理与光电工程学院,广东 广州
关键词: 锆钛酸锶钡陶瓷高温固相法电阻开关氧空位(BaxSr1-x)(Zr0.1Ti0.9)O3 CeramicsHigh Temperature Solid State Reaction Method Resistive Switching Oxygen Vacancies
摘要: 传统高温固相法制备的锆钛酸锶钡陶瓷为钙态矿结构,钡离子的掺杂会轻微影响样品的结构。从X-Ray衍射图谱可以看出,钡离子掺杂量的增加会使(220)峰逐渐向低角度移动,样品的晶格常数增加。所有的样品展现出较好的电阻开关效应。开关性能与之前大量报道的薄膜和晶体有着相似的优越性能,同时具有制作工艺更加简单、价格低这一特点。烧结的过程中极易产生氧空位,这可能是引起电阻开关效应的原因。我们通过对样品的阻抗进行拟合分析,并计算出活化能。得到的所有活化能都在1 eV到2 eV之间,证实了之前的猜测。锆钛酸锶钡陶瓷的电阻开关效应也为存储器器件的发展提供了更多的探索空间。
Abstract: (BaxSr1-x)(Zr0.1Ti0.9)O3 ceramics were prepared by the traditional high temperature solid state reaction method and had a typical perovskite structure. The structure of the samples was influenced by Ba2+ doped. As shown by X-ray diffraction patterns, peaks (220) shift toward a low degree with the increasing of Ba2+ doped, implying that the lattice parameters increase with the increasing x. All of the samples showed a good resistive switching effect. The switching effect of the samples had a lot of specialties as good as thin film devices or single crystal devices, and the preparation process was simpler and had low cost. Oxygen vacancies were easy to be produced in the sintering process, and it might be the reason for inducing the resistive switching effect. We analyzed the impedance of the samples and calculated the activation energy (Ea). Ea values were between 1 to 2 eV, which confirmed what we suspected. The switching effect of(BaxSr1-x)(Zr0.1Ti0.9)O3 ceramics provides the possibility of new switching devices with the memory effect composed of ceramics.
文章引用:朱智, 唐新桂. 锆钛酸锶钡陶瓷的电阻开关效应[J]. 应用物理, 2017, 7(3): 63-70. https://doi.org/10.12677/APP.2017.73009

参考文献

[1] Lewis, D.L. and Lee, H.H.S. (2009) Architectural Evaluation of 3D Stacked RRAM Caches. IEEE International Conference on 3D System Integration, San Francisco, 28-30 September 2009, 1-4.
https://doi.org/10.1109/3dic.2009.5306582
[2] 胡舒凯, 俊杰, 周海芳, 张拥军, 方旭东. 忆阻器存储研究与展望[J]. 计算机研究与发展, 2012, 49(s1): 79-84.
[3] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展[J]. 物理学报, 2014, 63(18): 20-28.
[4] Hickmott, T.W. (1962) Low-Frequency Negative Resistance in Thin Anodic Oxide Films. Journal of Applied Physics, 33, 2669-2682.
https://doi.org/10.1063/1.1702530
[5] 季振国, 王君杰, 毛启楠, 席俊华. Bi2O3薄膜的制备及其电阻开关特性的研究[J]. 无机材料学报, 2012, 27(3): 323-326.
[6] 张涛, 徐智谋, 武兴会, 刘斌昺. 室温下制备非晶ZnO薄膜及其电阻开关特性研究[J]. 无机材料学报, 2014, 29(11): 1161-1166.
[7] Kwon, D.H., Kim, K.M., Jang, J.H., Jeon, J.M., Lee, M.H., Kim, G.M., Li, X.S., Park, G.S., Lee, B., Han, S., Kim, M. and Hwang, C.S. (2010) Atomic Structure of Conducting Nanofilaments in TiO2 Resistive Switching Memory. Nature Nanotechnology, 5, 148-153.
https://doi.org/10.1038/nnano.2009.456
[8] Szot, K., Speier, W., Bihlmayer, G. and Waser, R. (2006) Switching the Electrical Resistance of Individual Dislocations in Single-Crystalline SrTiO3. Nature Materials, 5, 312-320.
https://doi.org/10.1038/nmat1614
[9] Hirose, S., Nakayama, A. and Niimi, H. (2008) Fabrication and Characterization of Colossal Electroresistance Chip Devices Composed of Polycrystalline Lanthanum-Doped Strontium Titanate and Palladium Electrodes. Journal of American Ceramic Society, 91, 478-484.
https://doi.org/10.1111/j.1551-2916.2007.02159.x
[10] Beck, A., Bednorz, J.G., Gerber, C., Rossel, C. and Widmer, D. (2000) Reproducible Switching Effect in Thin Oxide Films for Memory Applications. Applied Physics Letters, 77, 139-141.
https://doi.org/10.1063/1.126902
[11] Scott, J.C. and Bozanno, L.D. (2007) Nonvolatile Memory Elements Based on Organic Materials. Advanced Materials, 19, 1452-1463.
https://doi.org/10.1002/adma.200602564
[12] Park, J., Kwon, D.H., Park, H., Jung, C.U. and Kim, M. (2014) Role of Oxygen Vacancies in Resistive Switching in Pt/Nb-Doped SrTiO3. Applied Physics Letters, 105, Article ID: 183103.
https://doi.org/10.1063/1.4901053
[13] Jung, C.H., Park, M.K. and Woo, S.I. (2012) Improvement of Oxygen Vacancy Migration through Nb Doping on Ba0.7Sr0.3TiO3 Thin Films for Resistance Switching Random Access Memory Application. Applied Physics Letters, 100, Article ID: 262107.
https://doi.org/10.1063/1.4730400
[14] Lee, S., Lee, J.S., Park, J.B., Kyoung, Y.K., Lee, M.J. and Noh, T.W. (2014) Anomalous Effect Due to Oxygen Vacan- cy Accumulation Below the Electrode in Bipolar Resistance Switching Pt/Nb: SrTiO3 Cells. AIP Advances, 2, Article ID: 066103.
[15] 冯少新, 李宝会, 金庆华, 郭振亚, 丁大同. 金红石结构TiO2晶体点缺陷形成能的经验途径计算[J]. 物理学报, 2000, 49(7): 1307-1311.
[16] Pan, F., Chen, C., Wang, Z.S., Yang, Y.C., Yang, J. and Zeng, F. (2010) Nonvolatile Resistive Switching Memories- Characteristics, Mechanisms and Challenges. Progress in Natural Science, 20, 1-15.
[17] Sawa, A. (2008) Resistive Switching in Transition Metal Oxides. Materials Today, 11, 28-36.
[18] Wang, X.F., Lu, X.M. and Zhang, C. (2010) Oxygen-Vacancy- Related High-Temperature Dielectric Relaxation in SrTiO3 Ceramics. Journal of Applied Physics, 107, Article ID: 114101.
https://doi.org/10.1063/1.3430987
[19] Singh, G., Tiwari, V.S. and Gupta, P.K. (2010) Role of Oxygen Vacancies on Relaxation and Conduction Behavior of KNbO3 Ceramic. Journal of Applied Physics, 107, Article ID: 064103.
https://doi.org/10.1063/1.3309745
[20] Wang, J., Tang, X.G., Chan, H.L.W., Choy, C.L. and Luo, H.S. (2005) Dielectric Relaxation and Electrical Properties of 0.94Pb(Fe1/2Nb1/2)O3-0.06PbTiO3 Single Crystals. Applied Physics Letters, 86, 152907-152909.
https://doi.org/10.1063/1.1901818
[21] Steinsvik, S., et al. (1997) The Defect Structure of SrFexTi1−xO3 (x = 0 - 0.8) Investigated by Electrical Conductivity Measurements and Electron Energy Loss Spectroscopy. Journal of Physics and Chemistry of Solids, 58, 969-976.
[22] Lin, G.C., Liu, H. and Zhang, J.X. (2012) Oxygen Vacancy Relaxation in Ca3Co4O9+δ Ceramics. Solid State Phenomena, 184, 98-103.
https://doi.org/10.4028/www.scientific.net/SSP.184.98
[23] Liu, L.J., Huang, Y.M., Su, C.X., Fang, L., Wu, M.X., Hu, C.Z. and Fan, H.Q. (2011) Space-Charge Relaxation and Electrical Conduction in K0.5Na0.5NbO3 at High Temperatures. Applied Physics A: Materials Science and Processing, 104, 1047-1051.
https://doi.org/10.1007/s00339-011-6358-4
[24] Zhang, T.F., Tang, X.G., Liu, Q.X., Lu, S.G., Jiang, Y.P., Huang, X.X. and Zhou, Q.F. (2014) Oxygen-Vacancy Related Relaxation and Conduction Behavior in (Pb1−xBax)(Zr0.95Ti0.05)O3 Ceramics. AIP Advances, 4, Article ID: 107141.
https://doi.org/10.1063/1.4900610
[25] Liu, L.J., Huang, Y.M., Li, Y.H., Wu, M.X., Fang, L., Hu, C.Z. and Wang, Y.A. (2012) Oxygen-Vacancy Related High-Temperature Dielectric Relaxation and Electrical Conduction in 0.95K0.5Na0.5NbO3-0.05BaZrO3 Ceramic. Physica B, 407, 136-139.