NaCl溶液中恒载荷作用对7020铝合金板材显微组织和拉伸性能的影响
Effect of Constant Load in NaCl Solution on Microstructure and Tensile Properties of 7020 Aluminum Alloy Sheet
DOI: 10.12677/MS.2017.76084, PDF, HTML, XML, 下载: 1,539  浏览: 3,887  国家科技经费支持
作者: 林化强, 孙 琳:中车青岛四方机车车辆股份有限公司,国家高速动车组总成工程技术研究中心,山东 青岛;刘胜胆, 张 臻, 汪 庆, 邓运来:中南大学,材料科学与工程学院,湖南 长沙
关键词: 7020铝合金显微组织拉伸性能恒载荷作用7020 Aluminum Alloy Microstructure Mechanical Properties Constant Load Effect
摘要: 通过室温拉伸测试、光学显微镜、扫描电镜和透射电镜等方法研究了3.5%NaCl溶液中恒载荷)应力值200, 250, 300 MPa)作用对7020铝合金板材显微组织和拉伸性能的影响。结果表明:NaCl溶液中恒载荷作用后,板材的拉伸性能下降。随着加载应力值增加,板材的抗拉强度和伸长率不断下降,而屈服强度先下降后略有所上升。恒载荷作用后,板材表面出现了腐蚀坑和沿晶腐蚀缺陷,腐蚀深度随加载应力增加呈上升趋势;拉伸时这些缺陷处易产生应力集中,增加了裂纹源数量,降低了拉伸性能。300 MPa加载时稍增加板材中的位错密度,减小了NaCl溶液中恒载荷作用后屈服强度的下降程度。
Abstract: The effect of constant load (200, 250, 300 MPa) in 3.5% NaCl solution on microstructure and tensile properties of 7020 aluminum alloy sheet was investigated by ambient temperature tensile test, optical microscopy, scanning electron microscopy and transmission electron microscopy. It is shown that tensile properties of the sheets decrease after constant load in NaCl solution. With the increase of load, ultimate strength and elongation tend to decrease, while proof yield strength decreases first and then increases slightly. After constant load in NaCl solution, there are a number of corrosion pits and intergranular faults; the corrosion depth tends to increase with the increase of load. During tensile test, stress concentration occurs at these sites, and therefore the number of crack sources is increased; consequently tensile properties are decreased. A load stress of 300 MPa increases slightly dislocation density in the sheet and therefore decreases the decrement of yield strength after constant load in NaCl solution.
文章引用:林化强, 孙琳, 刘胜胆, 张臻, 汪庆, 邓运来. NaCl溶液中恒载荷作用对7020铝合金板材显微组织和拉伸性能的影响[J]. 材料科学, 2017, 7(6): 633-639. https://doi.org/10.12677/MS.2017.76084

参考文献

[1] Chubb, J.P., Morad, T.A. and Hockenhull, B.S. (1995) The Effect of Exfoliation Corrosion on the Fracture and Fatigue of 7178T6 Aluminum. International Journal of Fatigue, 17, 49-54.
https://doi.org/10.1016/0142-1123(95)93050-C
[2] 安国锋, 吕胜利, 张伟, 等. LC4铝合金结构腐蚀损失剩余强度预测[J]. 仪器仪表学报, 2009, 30(6): 777-780.
[3] 张恩山, 郭东旭, 王燕昌, 等. 腐蚀环境中铝合金材料力学性能退化研究[J]. 兵器材料科学与工程, 2014, 37(5): 23-26.
[4] 廖文博, 刘心宇, 刘胜胆, 等. 局部腐蚀对不同热处理状态7055铝合金拉伸性能的影响[J]. 中国有色金属学报, 2011, 21(8): 1855-1861.
[5] 廖文博, 刘心宇, 刘胜胆, 等. 剥落腐蚀对7055铝合金板材力学性能的影响, 中南大学学报(自然科学版), 2012, 43(6): 2137-2141.
[6] 祁星, 宋仁国, 祁文娟, 等. 7050铝合金在EXCO 溶液中的腐蚀与氢脆对拉伸性能的影响[J]. 稀有金属材料与工程, 2015, 44(11): 2851-2856.
[7] Polmear, I.J. (2006) Light Alloys. 4th Edition, Elsevier Butterworth-Heinemann, Oxford.
[8] Liu, S.D., Chen, B., Li, C.B., et al. (2015) Mechanism of low Exfoliation Corrosion Resistance Due to Slow Quenching in High Strength Aluminium Alloy. Corrosion Science, 91, 203-212.
https://doi.org/10.1016/j.corsci.2014.11.024
[9] Li, D., Yin, B., Lei, Y., et al. (2016) Critical Quenching Rate for High Hardness and Good Exfoliation Corrosion. Metals and Materials International, 22, 222-228.
https://doi.org/10.1007/s12540-016-5504-0
[10] Chen, J.Z., Zhen, L.Z. and Yang, S.J. (2009) Investigation of Precipitation Behavior and Related Hardening in AA 7055 Aluminum Alloy. Materials Science and Engineering A, 500, 34-42.
https://doi.org/10.1016/j.msea.2008.09.065
[11] 冯迪, 张新明, 刘胜胆. 非等温回归再时效对7055 铝合金中厚板的厚向组织及性能均匀性的影响[J]. 中国有色金属学报, 2015, 25(11): 3000-3010.
[12] Bobby, K.M. and Raja, V.S. (2006) Hydrogen Embrittlement Susceptibility of over Aged 7010 Al Alloy. Journal of Materials Science, 41, 5495−5499.
https://doi.org/10.1007/s10853-006-0287-1