基于ALA-PDT的HL60细胞中活性氧的检测
ROS Detection in HL60 Based on ALA-PDT
摘要: 随着光动力学疗法(photodynamic therapy, PDT)基础研究的不断深入和临床应用的广泛开展,对PDT过程中产生的活性氧的实时监测近年来已成为PDT研究的热点问题。实验采用荧光探针技术,通过获得的荧光光谱研究了基于ALA-PDT的HL60细胞中活性氧产生的情况。实验结果表明在ALA浓度为10 mM/L,孵育时间为4 h,光照剂量为60 min的光学参数下,光动力反应中产生的活性氧是最多,HL60细胞灭活效果最佳,PDT效率达93.2%。
Abstract: With the development of the basic research of photodynamic therapy (PDT) and a wide range of potential clinical applications have be carried out. The monitoring of reactive oxygen species (ROS) which produced in PDT has become a hot issue of PDT research in recent years. In the paper, the status of ROS in HL60 cells were investigated by fluorescence spectra acquired during PDT. The results showed that the largest number of ROS in PDT was achieved at the optimized conditions(the cells incubation time is 4 hours, the added concentration of ALA is 10 mM/L), in which up to 93.2% PDT efficiency for the HL60 Cells can be obtained within 60 minutes.
文章引用:李莉莉, 郑泽鳞, 黄康强, 熊建文, 王健. 基于ALA-PDT的HL60细胞中活性氧的检测[J]. 光电子, 2011, 1(2): 11-15. http://dx.doi.org/10.12677/oe.2011.12003

参考文献

[1] 吴继明, 熊建文, 肖化. 用于肿瘤治疗的光动力学疗法[J]. 激光杂志, 2003, 24(1): 70-74.
[2] B. Z. Zhao, Y. Y. He. Recent advances in the prevention and treatment of skin cancer using photodynamic therapy. Expert Review of Anticancer Therapy, 2010, 10(11): 1797-1809.
[3] 熊建文, 肖化, 陈丽等. 基于ALA-PDT体外灭活HL60细胞的实验研究[J]. 光电子激光, 2004, 15(9): 1180-1183.
[4] 吴继明, 熊建文, 肖化等. 普通白光光源应用于ALA-PDT的实验研究[J]. 激光杂志, 2004, 5(5): 231-234.
[5] J. H. Park, Y. H. Moon, D. J. Kim, et al. Photodynamic therapy with hexenyl ester of 5-aminolevulinic acid induces necrotic cell death in salivary gland adenocarcinoma cells. Oncology Reports, 2010, 24(1): 177-181.
[6] C. Kim, C. W. Chung, K. H. Choi, et al. Effect of 5-aminolevuli- nic acid-based photodynamictherapy via reactive oxygen species in human cholangiocarcinoma cells. International Journal of Na- nomedicine, 2011, 6: 1357-1363. http://www.dovepress.com/effect-of-5-aminolevulinic-acid-based-photodynamic-therapy-via-reactiv-a7775
[7] V. Nadeau, M. O. Dwyer, K. Hamdan, et al. In vivo mea- surement of 5-aminolaevulinic acid-induced protoporphyrin IX photobleaching: A comparison of red and blue light of various intensities. Photodermatol Photoimmunol Photomed, 2004, 20: 170-174.
[8] 熊建文, 肖化, 张镇西. MTT法和CCK-8法检测细胞活性之测试条件比较[J]. 激光生物学报, 2007, 16(5): 559-562.
[9] R. Traystmn, J. Kirsch, R. Koehler. Oxygen radical mechanisms of brain injury following ischemia and reperfusion. Applied Physiology, 1991, 71(4): 1185-1195.
[10] 邢达, 谭石慈等. 植物体应激反应中生物光子发射的实验观测[J]. 科学通报, 1999, 44 (21): 2299-2302.
[11] V. Verma, Z. Ning, A. K. Cho, et al. Redox activity of urban quasi-ultrafine particles from primary and secondary sources. Atmospheric Environment, 2009, 43(40): 6360-6368.
[12] D. Sutoa, Y. Ikeda, K. Stato, et al. Nactivation of cysteine and serine proteases by singlet oxygen. Archives of Biochemistry and Biophysics, 2007, 461(2): 151-158.
[13] R. Bonnett, G. Martinez. Photobleaching of sensitisers used in photodynamic therapy. Tetrahedron, 2001, 57(47): 9513-9547.
[14] C. L. Yu, S. Chen and M. Zhang. Spectroscopic studies and pho- todynamic actions of hypocrellin B in liposomes. Photo- chemistry and Photobiology, 2001, 73(4): 482-488.
[15] W. Zhong, J. P. Celli, I. Rizvi, et al. In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring. British Journal of Cancer, 2009, 101(12): 2015-2022.
[16] M. Price, J. J. Reiners, A. M. Santiago, et al. Monitoring singlet oxygen and hydroxyl radical formation with fluorescent probes during photodynamic therapy. Photochemistry and Photobiology, 2009, 85(5): 1177-1181.
[17] B. Diez, R. C. Russo, M. J. Teijo, et al. ROS production by endogenously generated protoporphyrin IX in murine leukemia cells. Cellular and Molecular Biology, 2009, 55(2): 15-19.