纳米线的螺旋多壳层结构
Helical Multi-Shell Structure of Nanowires
摘要: 本文采用卷曲法构造了多壳层纳米线并对其进行分子动力学模拟以探讨其结构的稳定性。根据该方法制作的纳米线,部分结构经过驰豫后仍稳定存在,如(11, 11) (5, 5)和(12, 12) (6, 6)纳米线,结构几乎保持不变;部分纳米线结构发生较大转变:(9, 9) (3, 3)转变成类似HCP结构,(10, 5) (4, 2)转变成了典型的FCC <110>结构。(9, 6) (3, 2),(12, 8) (6, 4),(12, 10) (6, 5)和(14, 10) (7, 5)结构的纳米线,驰豫后尽管其偶分布函数变化不显著,但横截面与初始构型相差较大,表明这些结构的不稳定性。而(11, 6) (4, 2), (13, 7) (6, 3)和(14, 8) (7, 4)结构处于螺旋结构和面心立方结构的中间状态。
文章引用:魏国玲, 彭传校, 王丽. 纳米线的螺旋多壳层结构[J]. 材料科学, 2012, 2(1): 58-61. http://dx.doi.org/10.12677/ms.2012.21010

参考文献

[1] M. Kawamura, N. Paul, V. Cherepanov and B. Voigtländer. Na- nowires and nanorings at the atomic level. Physical Review Letters, 2003, 91(9): Article ID 096102.
[2] C. L. Cheung, J. H. Hafner, T. W. Odom, K. Kim and C. M. Lieber. Growth and fabrication with single-walled carbon nano- tube probe microscopy tips. Applied Physics Letters, 2000, 76 (21): 3136-3138.
[3] K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi and H. Kakibayashi. Growth and optical properties of nanometer—Scale GaAs and InAs whiskers. Journal of Applied Physics, 1995, 77(2): 447-462.
[4] J. Schiotz, K. W. Jacobsen. A maximum in the strength of na- nocrystalline copper. Science, 2003, 301(5638): 1357-1359.
[5] K. R. S. Sankaranarayanan, V. R. Bhethanabotla and B. Joseph. Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters. Physical Review B, 2005, 71(19): 195415.
[6] F. Patolsky, B. P. Timko, G. Yu, Y. Fang, A. B. Greytak, G. Zheng and C. M. Lieber. Detection, stimulation, and inhibition of neu- ronal signals with high-density nanowire transistor arrays. Science, 2006, 313(5790): 1100-1104.
[7] G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditl- bacher, A. Leitner and F. R. Aussenegg. Optical properties of Ag and Au nanowire gratings. Journal of Applied Physics, 2001, 90: 3825-3830.
[8] O. Gülseren, F. Ercolessi and E. Tosatti. Noncrystalline struc- tures of ultrathin unsupported nanowires. Physical Review Le- tters, 1998, 80(17): 3775-3778.
[9] B. L. Wang, S. Y. Yin, G. H. Wang, A. Buldum and J. J. Zhao. Novel structures and properties of gold nanowires. Physical Re- view Letters, 2001, 86(10): 2046-2049.
[10] E. Tosatti, S. Prestipino. Weird gold nanowires. Science, 2000, 289(5479): 561-563.
[11] E. Tosatti, S. Prestipino, S. Kostlmeier, A. Dal Corso and F. D. Di Tolla. String tension and stability of magic tip-suspended na- nowires. Science, 2001, 291(5502): 288-290.
[12] R. T. Senger, S. Dag and S. Ciraci. Chiral single-wall gold na- notubes. Physical Review Letters, 2004, 93(19): Article ID 196807.
[13] Y. Iguchi, T. Hoshi and T. Fujiwara. Two-Stage formation model and helicity of gold nanowires. Physical Review Letters, 2007, 99(12): Article ID 125507.
[14] J. Jia, D. Shi, B. Wang and J. Zhao. Structural properties of silver nanowires from atomistic descriptions. Physical Review B, 2007, 76(16): Article ID 165420.
[15] D. Cheng, W. Y. Kim, S. K. Min, T. Nautiyal and K. S. Kim. Magic structures and quantum conductance of [110] silver nano- wires. Physical Review Letters, 2006, 96(9): Article ID 096104.
[16] D. S. Portal, E. Artacho, J. Junquera, P. Ordejon, A. Garcia and J. M. Soler. Stiff monatomic gold wires with a spinning zigzag geometry. Physical Review Letters, 1999, 83(19): 3884-3887.
[17] L. Wang , C. X. Peng and J. H. Gong. Molecular dynamics study of the mechanics for Ni single-wall nanowires. European Journal of Mechanics ASolids, 2009, 28(4): 877-881.
[18] Y. Kondo, K. Takayanagi. Synthesis and characterization of heli- cal multi-shell gold nanowires. Science, 2000, 289(5479): 606- 608.
[19] S. P. Chen, A. F. Voter. Investigation of the effects of boron on Ni3Al grain boundaries by atomistic simulations. Journal of Ma- terials Research, 1990, 5(5): 955-970.
[20] N. A. Melosh. Ultrahigh-density nanowire lattices and circuits. Science, 2003, 300: 112.