螯合凝胶的制备及其从水溶液除镉性能研究
Study on Preparation of Chelating Gel and Its Performance of Removing Cadmium from Aqueous Solution
DOI: 10.12677/HJCET.2012.24017, PDF, HTML, 下载: 4,483  浏览: 16,284  国家自然科学基金支持
作者: 周 虹, 刘 建*, 吴 茜, 吴书凤:长安大学环境科学与工程学院化学工程系
关键词: 聚丙烯酰胺凝胶三乙烯四胺接枝除镉Polyacrylamide Gel; Triethylenetetramine (TETA); Grafting; Removing Cadmium
摘要:

镉污染是当今重金属污染中面积最广、危害最大的重金属元素之一,对水体镉污染处理方法的研究也一直是热点研究课题。本文研究了依据Mannich反应,以聚丙烯酰胺凝胶(PAM-Gel)为骨架,接枝三乙烯四胺,得到了螯合接枝凝胶。当PAM-Gel:甲醛:三乙烯四胺物料配比为1:2.4:2.5pH = 11,反应时间为2 h + 2 h,反应温度为50时,得到最佳接枝效果。并研究了该凝胶及从水溶液中去除Cd2+的最佳条件。结果表明,当镉含量为10 mg/L时,在pH = 4~8,固液比(w/v)1:166,振荡时间为40 min时,去除率可达到98%以上。静态法测得凝胶对镉的饱和吸附量为42.3729 mg/g,除镉效果明显。获得了一种新的、低成本的从镉废水中去除镉的材料和方法。

Abstract: Cadmium pollution has been one of heavy metal elements which have most widely pollution area in the heavy metal pollution, and researed on treatment of cadmium pollution from aqueous solution also is a hot spot. In this paper, according to the Mannich-Reaction, a kind of chelating polyacrylamide gel (PAM-Gel) grafted with triethylene- tetramine was prepared by using polyacrylamide (PAM) as skeleton. The best grafting degree obtained when molar ratio of PAM-Gel:formaldehyde:TETA is 1:2.4:2.5, pH = 11, reaction time is 2 h + 2 h, reaction temperation is 50˚C. And the optimum of Cd2+ removal from aqueous solution was experimented. The results show that for the cadmium concen- tration of 10 mg/L the optimum of cadmium (II) removal is obtained at pH = 4 - 8, oscillating for 40 min and using a solid-liquid ratio (w/v) 1:166. At these conditions, the removal rate can be above 98%. And the saturated adsorption capacity was recorded being 42.3729 mg/g by static method. Thus, a new and low-cost material and method to remove cadmium from aqueous solution is obtained.
文章引用:周虹, 刘建, 吴茜, 吴书凤. 螯合凝胶的制备及其从水溶液除镉性能研究[J]. 化学工程与技术, 2012, 2(4): 97-102. http://dx.doi.org/10.12677/HJCET.2012.24017

参考文献

[1] 陈志良, 莫大伦, 仇荣亮. 镉污染对生物有机体的危害及防治对策[J]. 环境保护科学, 2001, 27(106): 37-39.
[2] 赵璇, 吴天宝, 叶裕才. 我国饮用水源的重金属污染及治理技术深化问题[J]. 给水排水, 1998, 24(10): 22-25.
[3] GB 8978-1996, 污水综合排放标准[S]. 北京: 中国标准出版社, 1996.
[4] 姜述芹, 周保学, 于秀娟等. 氢氧化镁处理含镉废水的研究[J]. 环境化学, 2003, 22(6): 601-604.
[5] 杨彤, 曹文海, 许耀生. 化学法处理重金属离子废水的改进[J]. Planting and Finishing, 1999, 21(5): 38-40.
[6] 陈阳, 钟国清. 电镀镉废水处理的实验研究[J]. Planting and Finishing, 2004, 26(5): 36-38.
[7] P. Miretzky, C. Munoz and A. Carrillo-Chavez. Cd (II) removal from aqueous solution by Eleocharis acicularis biomass, equi-lib- rium and kinetic studies. Bioresource Technology, 2010, 101(8): 2637-2642.
[8] J. R. Memon, S. Q. Memon and M. I. Bhanger. Effi-ciency of Cd(II) removal from aqueous media using chemically modi-fied polystyrene foam. European Polymer Journal, 2008, 44(5): 1501- 1511.
[9] Y. Fernández, E. Maraňón, L. Castrillón, et al. Removal of Cd and Zn from inorganic industrial waste leachate by ion ex- change. Journal of Hazardous Materials, 2005, 126(1-3): 169- 175.
[10] T. Mahmood, M. T. Saddique, A. Naeem, et al. Cation exchange removal of Cd from aqueous solution by NiO. Journal of Haz- ardous Materials, 2011, 185(2-3): 824-828.
[11] 王岩, 王玉军, 骆广生等. 中空纤维膜萃取镉离子的研究[J]. 化学工程, 2002, 30(5): 62-66.
[12] 马铭, 何鼎胜, 谢赛花. 三正辛胺-二甲苯支撑液膜萃取Cd (II)的研究[J]. 膜科学与技术, 1999, 19(2): 45-48.
[13] 白红娟, 张肇铭, 李保珍等. 固定化球形红细菌去除镉的动力学及其与质粒的关系[J]. 应用与环境生物学报, 2008, 14(2): 249-252.
[14] T. J. Butter. The removal and recovery of cadmium from dilute aqueous solutions by biosorption and electrolysis at laboratory scale. Water Research, 1998, 32(2): 400.
[15] P. Marques, H. M. Pinheiro and M. F. Rosa. Cd(II) removal from aqueous solution by immobilised waste brewery yeast in fixed- bed and airlift reactors. Desalination, 2007, 214(1-3): 343-351.
[16] 沈萍, 朱国伟. 含镉废水处理方法的比较[J]. 污染防治技术, 2010, 23(6): 56-59.
[17] 李述文, 范如霖. 实用有机化学手册[M]. 上海: 上海科学技术出版社, 1981.
[18] GB 7471-87水质镉的测定双硫腙分光光度法[S]. 北京: 国家标准出版社, 1987.