#### 期刊菜单

Design and Simulation Analysis of AGV Automatic Charging Docking Device Based on Solidworks
DOI: 10.12677/MET.2022.112011, PDF, HTML, XML, 下载: 187  浏览: 333  科研立项经费支持

Abstract: This paper aims to design a guiding charging docking device to reduce the position error caused by the automatic docking of charging male head and charging female head by means of mechanical guiding docking. The principle design of the charging docking device is carried out, and the theoretical force analysis is carried out. The charging docking device is modeled by Solidworks software. The docking motion of the charging docking device is simulated through the Motion module in Solidworks, and the force and displacement data are analyzed. The simulated force data analysis is compared with the theoretical force analysis to verify the rationality of the device design. The stability and effectiveness of the motion of the device are verified by multiple motion simulations. The results show that the design can reduce the position error of the automatic docking between the charging male head and the charging female head by mechanically guiding the docking, and achieve stable and successful docking.

1. 引言

2. 充电对接装置原理设计与受力分析

Figure 1. Schematic diagram of charging docking device

1) 牵引力FA的大小与作用力FE的大小几乎相等。

2) 摩擦力fE的大小取决于接触面积与滑动因子μ的大小。为了减小接触面积故设计接触面为曲面，且采用油性材质降低滑动因子μ，使得摩擦力fE的大小趋近于零。

3) 作用力FF的大小等于摩擦力fB与摩擦力fE之和，fB是滑轨与滑块间的阻力，大小趋近于零，故FF的大小趋近于零。摩擦力fF的大小由FF的大小决定故fF的大小趋近于零。

4) 支撑力FC是作用力FE提供的分力，而作用力FE由牵引力FA提供，牵引力FA远大于作用力FE，故“FC始终大于力FF”。

3. 充电对接装置建模与对接运动原理

3.1. 对接装置建模

1) 将AGV车体充电区从AGV车体侧面调整至AGV车体尾端如图4所示，利用AGV车体牵引力提供充电对接过程的驱动力。

2) 由于AGV磁导航传感器存在一定位置误差，无法精确地将充电公头与充电母头成功对接。为了减小充电公头与充电母头在对接中存在的位置误差。在充电区中充电对接公头的安装板与AGV车体间设计一滑轨，使得充电公头位置有一定调整量。在安装板上设计导向板导引充电公头与充电母头的对接。从安全角度考虑另设计于充电公头上安装一步进电机与丝杠组合，能够固定对接成功后的充电公头与充电母头，避免充电脱落等意外发生。建模如图5所示。

3) 充电箱对接结构配合改进后充电对接公头进行设计，充电母头能够与充电公头对接，并在纵向上通过导向棒与导向轴承进行滑动，配合连杆结构推动充电箱对接结构导向板与改进后充电对接公头中导向板相互配合导引，弹簧施加导向板弹力配合AGV车体牵引力使得充电母头在纵向上有一定的伸缩量，在充电完成后自动将充电母头恢复至初始位置。建模如图6所示。

3.2. 对接运动原理

AGV自动充电对接装置对接运动状态：AGV自动充电对接装置由AGV车体结构中电机提供的驱动力，使得AGV车体沿着磁导线运动进入充电区，车体降速并匀速继续沿着磁导线运动直至充电公头与充电母头对接成功，AGV车体停止运动。整体运动原理如图7所示。

Figure 2. AGV car body model of an enterprise

Figure 3. Three dimensional model of AGV charging connector in an enterprise

Figure 4. Improved AGV body model

Figure 5. Improved three-dimensional model of charging docking male

Figure 6. Three dimensional model of charging box docking structure

Figure 7. Overall motion principle of charging docking device

Figure 8. Principle of docking motion

4. 充电对接装置运动仿真与分析

4.1. 运动仿真

4.2. 受力分析

FA与FE的仿真结果如图9所示。通过图9的仿真曲线可以看出：充电对接装置在对接运动中充电公头与充电母头未接触时力FA与力FE大小完全重合，在充电对接装置对接运动中充电公头与充电母头接触时力FA与力FE大小基本相同，验证了上文理论受力分析结论(1)成立。

Figure 9. FA and FE curve

fE的仿真结果如图10所示。通过图10的仿真曲线可以看出：充电对接装置在整个对接运动过程中摩擦力fE的峰值不超过1.5 N，远小于驱动力FC，验证了上文理论受力分析结论(2)成立。

Figure 10. fE curve

fF的仿真结果如图11所示。通过图11的仿真曲线可以看出：充电对接装置在整个对接运动过程中摩擦力fF的峰值不超过0.18 N，远小于驱动力FA，即fF可忽略不计，验证了上文理论受力分析结论(3)成立。

Figure 11. fF curve

FC与FF的仿真结果如图12所示。通过图12的仿真曲线可以看出：充电对接装置在整个对接运动过程中“力FC始终大于力FF”，验证了上文理论受力分析结论(4)成立。

Figure 12. FC and FF curve

4.3. 运动分析

Table 1. Simulation test data

4.4. 结语

NOTES

*通讯作者。

 [1] 赵昕, 彭志远, 赵松璞, 等. 基于激光测距仪与里程计融合定位技术的变电站智能巡检机器人研究[J]. 电工技术, 2020(18): 44-45. [2] 刘星余. 面向物流仓储分拣机器人的多目标视觉识别与定位方法研究[J]. 粘接, 2021(7): 109-112. [3] Zhang, Y., Guan, T., Duan, L., et al. (2015) Inertial Sensors Supported Visual Descriptors Encoding and Geometric Verification for Mobile Visual Location Recognition Applications. Signal Processing, 112, 17-26. https://doi.org/10.1016/j.sigpro.2014.08.029 [4] 杨墨, 隋天日, 曹涛, 等. 变电站巡检机器人自动充电系统[J]. 制造业自动化, 2013, 35(3): 47-49. [5] 曹涛, 孙大庆, 王明瑞, 等. 充电机构限位止停机构[P]. 中国专利, 201392876. 2010-01-27. [6] Mahakul, R., Thatoi, D.N., Choudhury, S., et al. (2020) Design and Numerical Analysis of Spur Gear Using SolidWorks Simulation Technique. Materials Today: Proceedings, 41, 340-346. https://doi.org/10.1016/j.matpr.2020.09.554 [7] 周登攀. 基于Solidworks的搬运机器人拾取机构的运动仿真与分析[J]. 内燃机与配件, 2021(18): 98-100. [8] 谢哲东, 向美琦, 姜立民. 人体负重下肢助力机械外骨骼结构设计与运动学仿真[J]. 机械设计与制造, 2020(10): 21-24. [9] Yang, Y.H., et al. (2019) Design of a Novel Coaxial Eccentric Indexing Cam Mechanism. Mechanism and Machine Theory, 132, 1-12. https://doi.org/10.1016/j.mechmachtheory.2018.10.012 [10] 刘杰, 卞新宇, 吴修娟, 王道林. 展开式载具连杆机构优化仿真及受力分析研究[J]. 机械设计与制造工程, 2021, 50(11): 35-40. [11] Azam, A., Ahmed, A., Hayat, N., et al. (2020) Design, Fabrication, Modelling and Analyses of a Movable Speed Bump-Based Mechanical Energy Harvester (MEH) for Application on Road. Energy, 214, Article ID: 118894. https://doi.org/10.1016/j.energy.2020.118894 [12] 龙鹏飞. 基于CAE的螺杆桩机关键技术研究[D]: [硕士学位论文]. 武汉: 武汉理工大学, 2016. [13] Zhu, A. and Zhao, G. (2017) Experimental Design of Closed-Loop Speed Regulating System of DC Motor Based on Proteus. Research and Exploration in Laboratory, 36, 52-56. [14] 李长安, 邓立君, 陈笑天. 一种自动穿串装置的设计[J]. 机电工程技术, 2020, 49(2): 152-154. [15] Gang, L.I. and Xin, S. (2017) Dynamic Analysis and Design of Continuous Shear Crankshaft. Journal of Chongqing University of Science and Technology (Natural Science Edition), 19, 91-94.