变化环境下昭通市干旱演变规律分析
Drought Evolution Analysis of Zhaotong City in Changing Environments
DOI: 10.12677/JWRR.2012.15061, PDF, HTML, 下载: 3,077  浏览: 10,979  国家自然科学基金支持
作者: 梁志杰*, 谢平, 许斌, 李析男, 陈丽:武汉大学水资源与水电工程科学国家重点实验室
关键词: 干旱变化环境变异诊断频率分析演变规律昭通Drought; Changing Environment; Alteration Diagnosis; Frequency Analysis; Evolution Pattern; Zhaotong
摘要: 由于受到气候变化和人类活动的影响,干旱灾害表现出频次增高、持续时间延长和灾害损失加重等非一致性特点。本文基于非一致性水文频率计算原理,提出基于跳跃分析的干旱频率计算方法,并分析变化环境下的干旱演变规律。以云南省昭通市为例,其干旱演变规律表明:昭通现状条件与过去条件相比,干旱发生的等级、频率均发生了显著的变化:特旱在过去条件下发生的概率为0.5%,而现状条件下发生的概率为5%;现状条件下重旱发生的概率是过去条件下的7倍左右。结果表明昭通市的气候向着不利于水资源开发利用和农作物生长的情形发展,也使得昭通市未来的抗旱形势变得更加严峻。
Abstract: Under the influence of climate changes and human activities, drought disaster emerged the incon-sistent features such as rate of recurrence higher, duration longer, disaster losses increased and so on. Based on the inconsistent hydrological frequency calculation principle, put forward the drought frequency calcula-tion based on jump analysis to analyze drought variation under changing environment. The example about Zhaotong Yunnan Province was attached, and the results show that: compared with the past conditions, the level and the frequency of drought occurs a significant change. The probability of occurrence of extraordi-nary drought is 0.5% in the past; but it’s 5% now. The probability of occurrence of heavy drought now is seven times than it’s in past. This indicates that the climate in the Zhaotong City is developing toward the di-rection which is not conducive to the crop growth and the development and utilization of water resources. It will also increase the drought threat in Zhaotong City in the future.
文章引用:梁志杰, 谢平, 许斌, 李析男, 陈丽. 变化环境下昭通市干旱演变规律分析[J]. 水资源研究, 2012, 1(5): 393-397. http://dx.doi.org/10.12677/JWRR.2012.15061

参考文献

[1] 中华人民共和国国家标准GB/T 20481-2006. 气象干旱等级[M]. 北京: 中国标准出版社, 2006: 11.
[2] National Standard of the People’s Republic of China GB/T 20481-2006. Classification of meteorological drought. Beijing: China Standard Press, 2006: 11. (in Chinese)
[3] 中华人民共和国水利部. 抗旱规划工作大纲[R], 2008.
[4] Ministry of Water Resources of the People’s Republic of China. Drought planning outline, 2008. (in Chinese)
[5] M. Hallack-Alegria, D. W. Watkins Jr. Drought frequency analysis and prediction in Sonora, Mexico. Anchorage: American Society of Civil Engineers, 2005: 501.
[6] 魏凤英, 张婷. 东北地区干旱强度频率分布特征及其环流背景[J]. 自然灾害学报, 2009, 18(3): 1-7.
[7] WEI Fengying, ZHANG Ting. Frequency distribution of drought intensity in Northeast China and relevant circulation background. Journal of Natural Disasters, 2009, 18(3): 1-7. (in Chinese)
[8] 杨成芳, 薛德强, 孙即霖. 山东省近531年旱涝变化气候诊断分析[J]. 山东气象, 2003, 23(4): 5-8.
[9] YANG Chengfang, XUE Deqiang and SUN Jilin. Diagnostic analysis on drought and flood variance in Shandong Province in the past 531 years. Journal of Shandong Meteorology, 2003, 23(4): 5-8. (in Chinese)
[10] 叶木林, 夏金鼎, 蔡晶, 等. 2009~2010年昭通市干旱分析[J]. 安徽农业科学, 2011, 39(18): 10956-10959, 11005.
[11] YE Mulin, XIA Jinding, CAI Jing, et al. Analysis on drought characteristics in Zhaotong during 2009-2010. Journal of Anhui Agricultural Sciences, 2011, 39(18): 10956-10959, 11005. (in Chinese)
[12] 袁文平, 周广胜. 标准化降水指标与Z指数在我国应用的对比分析[J]. 植物生态学报, 2004, 28(4): 523-529.
[13] YUAN Wenping, ZHOU Guangsheng. Comparision between standardized precipitation index and Z index in China. Journal of Plant Ecology, 2004, 28(4): 523-529. (in Chinese)
[14] 谢平, 陈广才, 夏军. 变化环境下非一致性年径流序列的水文频率计算原理[J]. 武汉大学学报(工学版), 2005, 38(6): 6-9.
[15] XIE Ping, CHEN Guangcai and XIA Jun. Hydrological frequency calculation principle of inconsistent annual runoff series under changing environments. Engineering Journal of Wuhan University, 2005, 38(6): 6-9. (in Chinese)
[16] 谢平, 陈广才, 雷红富, 等. 水文变异诊断系统[J]. 水力发电学报, 2010, 29(1): 85-91.
[17] XIE Ping, CHEN Guangcai, LEI Hongfu, et al. Hydrological alteration diagnosis system. Journal of Hydroelectric Engineering, 2010, 29(1): 85-91. (in Chinese)
[18] 谢平, 郑泽权. 水文频率计算有约束加权适线法[J]. 武汉水利电力大学学报, 2000, 33(1): 49-52.
[19] XIE Ping, ZHENG Zequan. A constrained and weighted fitting method for hydrologic frequency calculation. Journal of Wuhan University of Hydraulic and Hydroelectric Engineering, 2000, 33(1): 49-52. (in Chinese)