#### 期刊菜单

Signal Reconstruction with Known Partial Support Based on l1-al2 Minimization

Abstract: The restricted isometry property of the measurement matrix in compressed sensing can ensure the reconstruction of sparse signals under certain conditions. In this paper, the sufficient conditions for signal recovery under three kinds of noise (Gaussian noise, impulse noise and uniform noise) are studied according to the known prior support information of the signal and the restricted isometry property of the measurement matrix under l1-al2(0 < a≤1) minimization model. These conditions intuitively reveal the close relationship between the restricted isometry property of the measurement matrix and signal recovery.

1. 引言

$\underset{x\in {ℝ}^{n}}{\mathrm{min}}{‖x‖}_{0}$ s.t. $b-Αx\in B,$ (1)

$\underset{x\in {ℝ}^{n}}{\mathrm{min}}{‖x‖}_{1}$ s.t. $b-Αx\in B,$ (2)

$\underset{x\in {ℝ}^{n}}{\mathrm{min}}{‖x‖}_{1}-\alpha {‖x‖}_{2}$ s.t. $b-Αx\in B,$ (3)

$\underset{x\in {ℝ}^{n}}{\mathrm{min}}{‖{x}_{{T}^{c}}‖}_{1}-\alpha {‖{x}_{{T}^{c}}‖}_{2}$ s.t. $b-Αx\in B,$ (4)

$\underset{x\in {ℝ}^{n}}{\mathrm{min}}{‖{x}_{{T}^{c}}‖}_{1}-\alpha {‖{x}_{{T}^{c}}‖}_{2}$ s.t. $b=Αx,$ (5)

2. 预备知识

$\left(1-{\delta }_{s}^{lb}\right){‖x‖}_{2}^{p}\le {‖Αx‖}_{p}^{p}\le \left(1+{\delta }_{s}^{ub}\right){‖x‖}_{2}^{p}$ (6)

$\left(1-{\delta }_{s}\right){‖x‖}_{2}^{2}\le {‖Αx‖}_{2}^{2}\le \left(1+{\delta }_{s}\right){‖x‖}_{2}^{2}$ (7)

$\mu \left(Α\right):=\underset{i\ne j}{\mathrm{max}}\frac{|〈{Α}_{i},{Α}_{j}〉|}{{‖{Α}_{i}‖}_{2}{‖{Α}_{j}‖}_{2}}.$

${‖{h}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}\le {‖{h}_{\stackrel{¯}{{T}_{0}}}‖}_{1}+2{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}+\alpha {‖h‖}_{2},$ (8)

${‖{h}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}-\alpha {‖{h}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{2}\le {‖{h}_{\stackrel{¯}{{T}_{0}}}‖}_{1}+2{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}+\alpha {‖{h}_{\stackrel{¯}{{T}_{0}}}‖}_{2},$ (9)

${‖{h}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}\le {‖{h}_{\stackrel{¯}{{T}_{0}}}‖}_{1}+\alpha {‖h‖}_{2},$ (10)

${‖{h}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}-\alpha {‖{h}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{2}\le {‖{h}_{\stackrel{¯}{{T}_{0}}}‖}_{1}+\alpha {‖{h}_{\stackrel{¯}{{T}_{0}}}‖}_{2},$ (11)

1) 对 $0\le \alpha \le 1$，令 $T=\mathrm{supp}\left(x\right)$${‖x‖}_{0}=s$，则

$\left(s-\alpha \sqrt{s}\right)\underset{j\in T}{\mathrm{min}}|{x}_{j}|\le {‖x‖}_{1}-\alpha {‖x‖}_{2}\le \left(\sqrt{s}-\alpha \right){‖x‖}_{2}.$ (12)

2) 令 $S,{S}_{1},{S}_{2}\subseteq \left[n\right]$ 满足 $S={S}_{1}\cup {S}_{2}$${S}_{1}\cap {S}_{2}=\varnothing$，则

${‖{x}_{{S}_{1}}‖}_{1}-\alpha {‖{x}_{{S}_{1}}‖}_{2}+{‖{x}_{{S}_{2}}‖}_{1}-\alpha {‖{x}_{{S}_{2}}‖}_{2}\le {‖{x}_{S}‖}_{1}-\alpha {‖{x}_{S}‖}_{2}.$ (13)

${‖{h}_{{\stackrel{¯}{{T}_{01}}}^{c}}‖}_{2}\le \frac{1}{2\sqrt{t}}\left({‖{h}_{\stackrel{¯}{{T}_{01}}}‖}_{2}+\frac{2{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}+\alpha {‖h‖}_{2}}{\sqrt{r+s}}\right),$ (14)

${‖h‖}_{2}\le \left(1+\frac{1}{2\sqrt{t}}\right){‖{h}_{\stackrel{¯}{{T}_{01}}}‖}_{2}+\frac{{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}}{\sqrt{t\left(r+s\right)}}+\frac{\alpha {‖h‖}_{2}}{2\sqrt{t\left(r+s\right)}},$ (15)

${‖Αh‖}_{1}\ge {\rho }_{k}{‖{h}_{\stackrel{¯}{{T}_{01}}}‖}_{2}-\frac{2\left(1+{\delta }_{k}^{ub}\right){‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}}{\sqrt{k}-\alpha },$ (16)

${\rho }_{k}=1-{\delta }_{r+s+k}^{lb}-\frac{1+{\delta }_{k}^{ub}}{a\left(r+s,k;\alpha \right)}$

$a\left(r+s,k;\alpha \right)=\frac{\sqrt{k}-\alpha }{\sqrt{r+s}+\alpha }$

$v=\underset{i=1}{\overset{N}{\sum }}{\lambda }_{i}{u}^{\left(i\right)},$

$0<{\lambda }_{i}\le 1,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\underset{i=1}{\overset{N}{\sum }}{\lambda }_{i}=1,$ (17)

$\mathrm{supp}\left({u}^{\left(i\right)}\right)\subseteq \mathrm{supp}\left(v\right),\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{‖{u}^{\left(i\right)}‖}_{0}\le s,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{‖{u}^{\left(i\right)}‖}_{\infty }\le \left(1+\frac{\sqrt{2}}{2}\right)\theta ,$

$\underset{i=1}{\overset{N}{\sum }}{\lambda }_{i}{‖{u}^{\left(i\right)}‖}_{2}^{2}\le \left({\left(1+\frac{\sqrt{2}}{2}\right)}^{2}\left(s-\sqrt{s}\right)+1\right){\theta }^{2}.$ (18)

$\text{χ}=\frac{\sqrt{r+s}+\alpha }{\sqrt{r+s}-1}\frac{{‖{h}_{\stackrel{¯}{{T}_{0}}}‖}_{2}}{\sqrt{r+s}}+\frac{2}{r+s-\sqrt{r+s}}{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1},$ (19)

${\text{W}}_{1}=\left\{i:|{h}_{{\stackrel{¯}{{T}_{0}}}^{c}}\left(i\right)|>\frac{\text{χ}}{t-1}\right\},$ (20)

${\text{W}}_{2}=\left\{i:|{h}_{{\stackrel{¯}{{T}_{0}}}^{c}}\left(i\right)|\le \frac{\text{χ}}{t-1}\right\},$ (21)

${h}_{{\text{W}}_{2}}=\underset{i=1}{\overset{N}{\sum }}{\lambda }_{i}{u}^{\left(i\right)},$ (22)

$\underset{i=1}{\overset{N}{\sum }}{\lambda }_{i}{‖{u}^{\left(i\right)}‖}_{2}^{2}\le \frac{{\left(1+\frac{\sqrt{2}}{2}\right)}^{2}\left(t\left(r+s\right)-\left(r+s\right)-\sqrt{t\left(r+s\right)-\left(r+s\right)}\right)+1}{{\left(t-1\right)}^{2}}{\text{χ}}^{2}.$ (23)

3. 主要结论

${B}^{{\mathcal{l}}_{2}}\left(\epsilon \right)=\left\{e:{‖e‖}_{2}\le {\epsilon }_{1}\right\};$ (24)

${B}^{{\mathcal{l}}_{1}}\left(\epsilon \right)=\left\{e:{‖e‖}_{1}\le {\epsilon }_{1}\right\};$ (25)

${B}^{DS}\left(\epsilon \right)=\left\{e:{‖{Α}^{Τ}e‖}_{\infty }\le {\epsilon }_{1}\right\}.$ (26)

${\delta }_{t\left(r+s\right)}<\frac{1}{\sqrt{1+\frac{{\left(\sqrt{r+s}+\alpha \right)}^{2}\left({\left(1+\frac{\sqrt{2}}{2}\right)}^{2}\left(t\left(r+s\right)-\left(r+s\right)-\sqrt{t\left(r+s\right)-\left(r+s\right)}\right)+1\right)}{\left(r+s\right){\left(t-1\right)}^{2}{\left(\sqrt{r+s}-1\right)}^{2}}}},$ (27)

$\begin{array}{c}{‖{\stackrel{^}{x}}^{{\mathcal{l}}_{2}}-x‖}_{2}\le \left(1+\sqrt{\frac{{\alpha }^{2}}{4\left(r+s\right)}+\frac{\alpha +\sqrt{r+s}}{\sqrt{r+s}}}+\frac{\alpha +\sqrt{2}}{2\sqrt{r+s}}\right)\frac{\left(1-\mu \right)\mu \sqrt{1+{\delta }_{t\left(r+s\right)}}}{\mu -{\mu }^{2}-{\left(\mu -1\right)}^{2}{\delta }_{t\left(r+s\right)}}\left({\epsilon }_{1}+{\epsilon }_{2}\right)\\ \text{\hspace{0.17em}}+\left(\left(\sqrt{r+s}+\sqrt{\frac{{\alpha }^{2}}{4}+\alpha \sqrt{r+s}+\left(r+s\right)}+\frac{\alpha +\sqrt{2}}{2}\right)\left(\frac{2{\delta }_{t\left(r+s\right)}\left(1-2\mu \right)}{\left(\mu -{\mu }^{2}-{\left(\mu -1\right)}^{2}{\delta }_{t\left(r+s\right)}\right)\left(\sqrt{r+s}+\alpha \right)}\\ \text{\hspace{0.17em}}+\sqrt{\frac{2\left(1-2\mu \right){\delta }_{t\left(r+s\right)}}{\left(\mu -{\mu }^{2}-{\left(\mu -1\right)}^{2}{\delta }_{t\left(r+s\right)}\right){\left(\sqrt{r+s}+\alpha \right)}^{2}}}\right)+\frac{\sqrt{2\left(r+s\right)}}{2}\right)\frac{{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}}{\sqrt{r+s}},\end{array}$ (28)

${‖Αh‖}_{2}\le {‖Α{\stackrel{^}{x}}^{{\mathcal{l}}_{2}}-y‖}_{2}+{‖y-Αx‖}_{2}\le {\epsilon }_{1}+{\epsilon }_{2}.$ (29)

${h}_{{w}_{2}}=\underset{i=1}{\overset{N}{\sum }}{\lambda }_{i}{u}^{\left(i\right)},$ (30)

$\underset{i=1}{\overset{N}{\sum }}{\lambda }_{i}{‖{u}^{\left(i\right)}‖}_{2}^{2}\le \frac{{\left(1+\frac{\sqrt{2}}{2}\right)}^{2}\left(t\left(r+s\right)-\left(r+s\right)-\sqrt{t\left(r+s\right)-\left(r+s\right)}\right)+1}{{\left(t-1\right)}^{2}}{\text{χ}}^{2},$ (31)

$\begin{array}{c}\underset{i=1}{\overset{N}{\sum }}{\lambda }_{i}{‖{u}^{\left(i\right)}‖}_{2}^{2}\le \frac{{\left(1+\frac{\sqrt{2}}{2}\right)}^{2}\left(t\left(r+s\right)-\left(r+s\right)-\sqrt{t\left(r+s\right)-\left(r+s\right)}\right)+1}{{\left(t-1\right)}^{2}}\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}×\left(\frac{{\left(\sqrt{r+s}+\alpha \right)}^{2}}{\left(r+s\right){\left(\sqrt{r+s}-1\right)}^{2}}{‖{h}_{\stackrel{¯}{{T}_{0}}}‖}_{2}^{2}+\frac{4\left(\sqrt{r+s}+\alpha \right)}{\left(r+s\right){\left(\sqrt{r+s}-1\right)}^{2}}{‖{h}_{\stackrel{¯}{{T}_{0}}}‖}_{2}{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}+\frac{4}{\left(r+s\right){\left(\sqrt{r+s}-1\right)}^{2}}{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}^{2}\right)\\ =\frac{1-2\mu }{{\mu }^{2}}\left({‖{h}_{\stackrel{¯}{{T}_{0}}}‖}_{2}^{2}+\frac{4{‖{h}_{\stackrel{¯}{{T}_{0}}}‖}_{2}{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}}{\sqrt{r+s}+\alpha }+\frac{4{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}^{2}}{{\left(\sqrt{r+s}+\alpha \right)}^{2}}\right),\end{array}$ (32)

$\underset{i=1}{\overset{N}{\sum }}\frac{{\lambda }_{i}}{4}{‖Α\left({h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}}+\mu {u}^{\left(i\right)}\right)‖}_{2}^{2}=\underset{i=1}{\overset{N}{\sum }}{\lambda }_{i}{‖Α\left(\left(\frac{1}{2}-\mu \right)\left({h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}}\right)-\frac{1}{2}\mu {u}^{\left(i\right)}+\mu h\right)‖}_{2}^{2}.$ (34)

$\begin{array}{c}\underset{i=1}{\overset{N}{\sum }}\frac{{\lambda }_{i}}{4}{‖Α\left({h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}}+\mu {u}^{\left(i\right)}\right)‖}_{2}^{2}\ge \left(1-{\delta }_{t\left(r+s\right)}\right)\underset{i=1}{\overset{N}{\sum }}\frac{{\lambda }_{i}}{4}{‖{h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}}+\mu {u}^{\left(i\right)}‖}_{2}^{2}\\ =\frac{1-{\delta }_{t\left(r+s\right)}}{4}\left({‖{h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}}‖}_{2}^{2}+{\mu }^{2}\underset{i=1}{\overset{N}{\sum }}{\lambda }_{i}{‖{u}^{\left(i\right)}‖}_{2}^{2}\right),\end{array}$ (35)

$\begin{array}{l}\underset{i=1}{\overset{N}{\sum }}{\lambda }_{i}{‖Α\left(\left(\frac{1}{2}-\mu \right)\left({h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}}\right)-\frac{1}{2}\mu {u}^{\left(i\right)}+\mu h\right)‖}_{2}^{2}\\ =\underset{i=1}{\overset{N}{\sum }}{\lambda }_{i}{‖Α\left(\left(\frac{1}{2}-\mu \right)\left({h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}}\right)-\frac{1}{2}\mu {u}^{\left(i\right)}\right)‖}_{2}^{2}+2\underset{i=1}{\overset{N}{\sum }}{\lambda }_{i}〈Α\left(\left(\frac{1}{2}-\mu \right)\left({h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}}\right)-\frac{1}{2}\mu {u}^{\left(i\right)}\right),\mu Αh〉+{\mu }^{2}{‖Αh‖}_{2}^{2}\\ =\underset{i=1}{\overset{N}{\sum }}{\lambda }_{i}{‖Α\left(\left(\frac{1}{2}-\mu \right)\left({h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}}\right)-\frac{1}{2}\mu {u}^{\left(i\right)}\right)‖}_{2}^{2}+\left(1-\mu \right)\mu 〈Α\left({h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}}\right),Αh〉\\ \le \left(1+{\delta }_{t\left(r+s\right)}\right)\underset{i=1}{\overset{N}{\sum }}{\lambda }_{i}{‖\left(\frac{1}{2}-\mu \right)\left({h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}}\right)-\frac{1}{2}\mu {u}^{\left(i\right)}‖}_{2}^{2}+\left(1-\mu \right)\mu {‖Α\left({h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}}\right)‖}_{2}{‖Αh‖}_{2}\\ \le \left(1+{\delta }_{t\left(r+s\right)}\right)\left({\left(\frac{1}{2}-\mu \right)}^{2}{‖{h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}}‖}_{2}^{2}+\frac{{\mu }^{2}}{4}\underset{i=1}{\overset{N}{\sum }}{\lambda }_{i}{‖{u}^{\left(i\right)}‖}_{2}^{2}\right)+\left(1-\mu \right)\mu \sqrt{1+{\delta }_{t\left(r+s\right)}}{‖{h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}}‖}_{2}\left({\epsilon }_{1}+{\epsilon }_{2}\right).\end{array}$ (36)

$\begin{array}{l}\left(\left(1+{\delta }_{t\left(r+s\right)}\right){\left(\frac{1}{2}-\mu \right)}^{2}-\frac{1-{\delta }_{t\left(r+s\right)}}{4}\right){‖{h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}}‖}_{2}^{2}+\frac{{\mu }^{2}{\delta }_{t\left(r+s\right)}}{2}\underset{i=1}{\overset{N}{\sum }}{\lambda }_{i}{‖{u}^{\left(i\right)}‖}_{2}^{2}\\ +\left(1-\mu \right)\mu \sqrt{1+{\delta }_{t\left(r+s\right)}}{‖{h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}}‖}_{2}\left({\epsilon }_{1}+{\epsilon }_{2}\right)\ge 0.\end{array}$

$\begin{array}{l}\left({\mu }^{2}-\mu +{\left(\mu -1\right)}^{2}{\delta }_{t\left(r+s\right)}\right){‖{h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}}‖}_{2}^{2}+\left(\left(1-\mu \right)\mu \sqrt{1+{\delta }_{t\left(r+s\right)}}\left({\epsilon }_{1}+{\epsilon }_{2}\right)+\frac{2{\delta }_{t\left(r+s\right)}\left(1-2\mu \right)}{\sqrt{r+s}+\alpha }{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}\right){‖{h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}}‖}_{2}\\ +\frac{2\left(1-2\mu \right){\delta }_{t\left(r+s\right)}}{{\left(\sqrt{r+s}+\alpha \right)}^{2}}{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}^{2}\ge 0.\end{array}$ (37)

${\delta }_{t\left(r+s\right)}<\frac{\mu }{1-\mu }=\frac{1}{\sqrt{1+\frac{{\left(\sqrt{r+s}+\alpha \right)}^{2}\left({\left(1+\frac{\sqrt{2}}{2}\right)}^{2}\left(t\left(r+s\right)-\left(r+s\right)-\sqrt{t\left(r+s\right)-\left(r+s\right)}\right)+1\right)}{\left(r+s\right){\left(t-1\right)}^{2}{\left(\sqrt{r+s}-1\right)}^{2}}}}.$

$\begin{array}{l}{‖{h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}}‖}_{2}\\ \le \frac{\left(1-\mu \right)\mu \sqrt{1+{\delta }_{t\left(r+s\right)}}\left({\epsilon }_{1}+{\epsilon }_{2}\right)+\left(\frac{2{\delta }_{t\left(r+s\right)}\left(1-2\mu \right)}{\sqrt{r+s}+\alpha }+\sqrt{\frac{2\left(1-2\mu \right){\delta }_{t\left(r+s\right)}}{{\left(\sqrt{r+s}+\alpha \right)}^{2}}\left(\mu -{\mu }^{2}-{\left(\mu -1\right)}^{2}{\delta }_{t\left(r+s\right)}\right)}\right){‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}}{\mu -{\mu }^{2}-{\left(\mu -1\right)}^{2}{\delta }_{t\left(r+s\right)}}.\end{array}$ (38)

$\begin{array}{c}{‖{h}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{2}^{2}\le {‖{h}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}{‖{h}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{\infty }\\ \le \left(\alpha {‖{h}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{2}+\left(\sqrt{r+s}+\alpha \right){‖{h}_{\stackrel{¯}{{T}_{0}}}‖}_{2}+2{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}\right)\frac{{‖{h}_{\stackrel{¯}{{T}_{0}}}‖}_{2}}{\sqrt{r+s}}\\ =\frac{\alpha }{\sqrt{r+s}}{‖{h}_{\stackrel{¯}{{T}_{0}}}‖}_{2}{‖{h}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{2}+\frac{\sqrt{r+s}+\alpha }{\sqrt{r+s}}{‖{h}_{\stackrel{¯}{{T}_{0}}}‖}_{2}^{2}+\frac{2{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}{‖{h}_{\stackrel{¯}{{T}_{0}}}‖}_{2}}{\sqrt{r+s}}.\end{array}$

${\left({‖{h}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{2}-\frac{\alpha {‖{h}_{\stackrel{¯}{{T}_{0}}}‖}_{2}}{2\sqrt{r+s}}\right)}^{2}\le \left(\frac{{\alpha }^{2}}{4\left(r+s\right)}+\frac{\alpha +\sqrt{r+s}}{\sqrt{r+s}}\right){‖{h}_{\stackrel{¯}{{T}_{0}}}‖}_{2}^{2}+\frac{2{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}{‖{h}_{\stackrel{¯}{{T}_{0}}}‖}_{2}}{\sqrt{r+s}}.$

$2|a||b|\le \frac{{\left(|a|+|b|\right)}^{2}}{2}$，可以得到

$\begin{array}{c}{‖{h}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{2}\le \left(\sqrt{\frac{{\alpha }^{2}}{4\left(r+s\right)}+\frac{\alpha +\sqrt{r+s}}{\sqrt{r+s}}}+\frac{\alpha }{2\sqrt{r+s}}\right){‖{h}_{\stackrel{¯}{{T}_{0}}}‖}_{2}+\sqrt{\frac{2{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}{‖{h}_{\stackrel{¯}{{T}_{0}}}‖}_{2}}{\sqrt{r+s}}}\\ \le \left(\sqrt{\frac{{\alpha }^{2}}{4\left(r+s\right)}+\frac{\alpha +\sqrt{r+s}}{\sqrt{r+s}}}+\frac{\alpha +\sqrt{2}}{2\sqrt{r+s}}\right){‖{h}_{\stackrel{¯}{{T}_{0}}}‖}_{2}+\frac{\sqrt{2}}{2}{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}.\end{array}$ (39)

$\begin{array}{c}{‖h‖}_{2}\le \left(1+\sqrt{\frac{{\alpha }^{2}}{4\left(r+s\right)}+\frac{\alpha +\sqrt{r+s}}{\sqrt{r+s}}}+\frac{\alpha +\sqrt{2}}{2\sqrt{r+s}}\right){‖{h}_{\stackrel{¯}{{T}_{0}}}‖}_{2}+\frac{\sqrt{2}}{2}{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}\\ \le \left(1+\sqrt{\frac{{\alpha }^{2}}{4\left(r+s\right)}+\frac{\alpha +\sqrt{r+s}}{\sqrt{r+s}}}+\frac{\alpha +\sqrt{2}}{2\sqrt{r+s}}\right)\frac{\left(1-\mu \right)\mu \sqrt{1+{\delta }_{t\left(r+s\right)}}}{\mu -{\mu }^{2}-{\left(\mu -1\right)}^{2}{\delta }_{t\left(r+s\right)}}\left({\epsilon }_{1}+{\epsilon }_{2}\right)\\ \text{\hspace{0.17em}}+\left(\left(\sqrt{r+s}+\sqrt{\frac{{\alpha }^{2}}{4}+\alpha \sqrt{r+s}+\left(r+s\right)}+\frac{\alpha +\sqrt{2}}{2}\right)\left(\frac{2{\delta }_{t\left(r+s\right)}\left(1-2\mu \right)}{\left(\mu -{\mu }^{2}-{\left(\mu -1\right)}^{2}{\delta }_{t\left(r+s\right)}\right)\left(\sqrt{r+s}+\alpha \right)}\\ \text{\hspace{0.17em}}+\sqrt{\frac{2\left(1-2\mu \right){\delta }_{t\left(r+s\right)}}{\left(\mu -{\mu }^{2}-{\left(\mu -1\right)}^{2}{\delta }_{t\left(r+s\right)}\right){\left(\sqrt{r+s}+\alpha \right)}^{2}}}\right)+\frac{\sqrt{2\left(r+s\right)}}{2}\right)\frac{{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}}{\sqrt{r+s}},\end{array}$

${‖{\stackrel{^}{x}}^{{\mathcal{l}}_{2}}-x‖}_{2}\le \left(1+\sqrt{\frac{{\alpha }^{2}}{4\left(r+s\right)}+\frac{\alpha +\sqrt{r+s}}{\sqrt{r+s}}}+\frac{\alpha +\sqrt{2}}{2\sqrt{r+s}}\right)\frac{\left(1-\mu \right)\mu \sqrt{1+{\delta }_{t\left(r+s\right)}}}{\mu -{\mu }^{2}-{\left(\mu -1\right)}^{2}{\delta }_{t\left(r+s\right)}}\left({\epsilon }_{1}+{\epsilon }_{2}\right),$

${\delta }_{t\left(r+s\right)}^{ub}+a\left(r+s,k;\alpha \right){\delta }_{r+s+k}^{lb} (40)

$\begin{array}{c}{‖x-\stackrel{^}{x}‖}_{2}\le \frac{\left(2\sqrt{t}+1\right)\sqrt{r+s}}{2\sqrt{t\left(r+s\right)}-\alpha }\left(\frac{1}{{\rho }_{t\left(r+s\right)}}\left({\epsilon }_{1}+{\epsilon }_{2}\right)+\frac{2\left(1+{\delta }_{t\left(r+s\right)}^{ub}\right){‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}}{{\rho }_{t\left(r+s\right)}\left(\sqrt{t\left(r+s\right)}-\alpha \right)}\right)+\frac{2}{2\sqrt{t\left(r+s\right)}-\alpha }{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}\\ =\frac{2}{2\sqrt{k}-\alpha }\left(1+\frac{\left(2\sqrt{t}+1\right)\left(1+{\delta }_{t\left(r+s\right)}^{ub}\right)\sqrt{r+s}}{{\rho }_{t\left(r+s\right)}\left(\sqrt{k}-\alpha \right)}\right){‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}+\frac{\left(2\sqrt{t}+1\right)\sqrt{r+s}}{\left(2\sqrt{k}-\alpha \right){\rho }_{t\left(r+s\right)}}\left({\epsilon }_{1}+{\epsilon }_{2}\right).\end{array}$ (41)

${‖{h}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}\le {‖{h}_{\stackrel{¯}{{T}_{0}}}‖}_{1}+2{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}+\alpha {‖h‖}_{2}.$ (42)

${‖e‖}_{1}={‖b-Αx‖}_{1}\le {\epsilon }_{2}$${‖b-Α{\stackrel{^}{x}}^{{\mathcal{l}}_{1}}‖}_{1}\le {\epsilon }_{1}$，可以得到

${‖Αh‖}_{1}={‖Α{\stackrel{^}{x}}^{{\mathcal{l}}_{1}}-Αx‖}_{1}\le {‖Α{\stackrel{^}{x}}^{{\mathcal{l}}_{1}}-b‖}_{1}+{‖b-Αx‖}_{1}\le {\epsilon }_{1}+{\epsilon }_{2}.$ (43)

${T}_{0}$ 是h中 $s\in {ℤ}_{+}$ 个最大绝对值项组成的指标集， ${T}_{1}$${h}_{{T}_{0}{}^{c}}$$k=t\left(r+s\right)\in {ℤ}_{+}$ 个最大绝对值项组成的指标集且 ${T}_{\stackrel{¯}{01}}=T\cup {T}_{0}\cup {T}_{1}$。然后，通过引理4的式(16)和式(43)，得到

$\left(1-{\delta }_{r+s+k}^{lb}-\frac{1+{\delta }_{t\left(r+s\right)}^{ub}}{a\left(r+s,k;\alpha \right)}\right){‖{h}_{\stackrel{¯}{{T}_{01}}}‖}_{2}-\left(1+{\delta }_{t\left(r+s\right)}^{ub}\right)\frac{2{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}}{\sqrt{k}-\alpha }\le {\epsilon }_{1}+{\epsilon }_{2},$ (44)

${\rho }_{t\left(r+s\right)}=1-{\delta }_{r+s+k}^{lb}-\frac{1+{\delta }_{t\left(r+s\right)}^{ub}}{a\left(r+s,k;\alpha \right)}>0.$

${‖{h}_{\stackrel{¯}{{T}_{01}}}‖}_{2}\le \frac{1}{{\rho }_{t\left(r+s\right)}}\left({\epsilon }_{1}+{\epsilon }_{2}\right)+\frac{\left(1+{\delta }_{t\left(r+s\right)}^{ub}\right)\sqrt{r+s}}{{\rho }_{t\left(r+s\right)}\left(\sqrt{k}-\alpha \right)}\frac{2{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}}{\sqrt{r+s}}.$ (45)

$\begin{array}{c}{‖{h}_{{\stackrel{¯}{{T}_{01}}}^{c}}‖}_{2}\le \sqrt{{‖{h}_{{\stackrel{¯}{{T}_{01}}}^{c}}‖}_{1}{‖{h}_{{\stackrel{¯}{{T}_{01}}}^{c}}‖}_{\infty }}\le \sqrt{\left({‖{h}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}-\underset{j\in {T}_{1}}{\sum }|{h}_{j}|\right)|{h}_{r+s+k}|}\\ \le \sqrt{\left({‖{h}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}-k|{h}_{r+s+k}|\right)|{h}_{r+s+k}|}=\sqrt{-k{\left(|{h}_{r+s+k}|-\frac{{‖{h}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}}{2k}\right)}^{2}+\frac{{‖{h}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}^{2}}{4k}}\le \frac{{‖{h}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}}{2\sqrt{k}}.\end{array}$ (46)

$\begin{array}{c}\frac{{‖{h}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}}{2\sqrt{k}}\le \frac{{‖{h}_{\stackrel{¯}{{T}_{0}}}‖}_{1}+2{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}+\alpha {‖h‖}_{2}}{2\sqrt{k}}\\ \le \frac{1}{2}\sqrt{\frac{r+s}{k}}\left({‖{h}_{\stackrel{¯}{{T}_{01}}}‖}_{2}+\frac{2{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}+\alpha {‖h‖}_{2}}{\sqrt{r+s}}\right)\\ =\frac{1}{2\sqrt{t}}\left({‖{h}_{\stackrel{¯}{{T}_{01}}}‖}_{2}+\frac{2{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}+\alpha {‖h‖}_{2}}{\sqrt{r+s}}\right).\end{array}$ (47)

$\begin{array}{c}{‖h‖}_{2}\le \sqrt{{‖{h}_{\stackrel{¯}{{T}_{01}}}‖}_{2}^{2}+\frac{1}{4t}{\left({‖{h}_{\stackrel{¯}{{T}_{01}}}‖}_{2}+\frac{2{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}+\alpha {‖h‖}_{2}}{\sqrt{r+s}}\right)}^{2}}\\ \le \left(1+\frac{1}{2\sqrt{t}}\right){‖{h}_{\stackrel{¯}{{T}_{01}}}‖}_{2}+\frac{1}{2\sqrt{t}}\frac{2{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}}{\sqrt{r+s}}+\frac{1}{2\sqrt{t}}\frac{\alpha {‖h‖}_{2}}{\sqrt{r+s}},\end{array}$ (48)

${‖h‖}_{2}\le \frac{\left(2\sqrt{t}+1\right)\sqrt{r+s}}{2\sqrt{t\left(r+s\right)}-\alpha }{‖{h}_{\stackrel{¯}{{T}_{01}}}‖}_{2}+\frac{2}{2\sqrt{t\left(r+s\right)}-\alpha }{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}.$ (49)

$\begin{array}{c}{‖h‖}_{2}\le \frac{\left(2\sqrt{t}+1\right)\sqrt{r+s}}{2\sqrt{t\left(r+s\right)}-\alpha }\left(\frac{1}{{\rho }_{t\left(r+s\right)}}\left({\epsilon }_{1}+{\epsilon }_{2}\right)+\frac{2\left(1+{\delta }_{t\left(r+s\right)}^{ub}\right){‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}}{{\rho }_{t\left(r+s\right)}\left(\sqrt{t\left(r+s\right)}-\alpha \right)}\right)+\frac{2}{2\sqrt{t\left(r+s\right)}-\alpha }{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}\\ =\frac{2}{2\sqrt{t\left(r+s\right)}-\alpha }\left(1+\frac{\left(2\sqrt{t}+1\right)\left(1+{\delta }_{t\left(r+s\right)}^{ub}\right)\sqrt{r+s}}{{\rho }_{t\left(r+s\right)}\left(\sqrt{t\left(r+s\right)}-\alpha \right)}\right){‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}+\frac{\left(2\sqrt{t}+1\right)\sqrt{r+s}}{\left(2\sqrt{t\left(r+s\right)}-\alpha \right){\rho }_{t\left(r+s\right)}}\left({\epsilon }_{1}+{\epsilon }_{2}\right).\end{array}$

${‖{\stackrel{^}{x}}^{{\mathcal{l}}_{1}}-x‖}_{2}\le \frac{\left(2\sqrt{t}+1\right)\sqrt{r+s}}{\left(2\sqrt{t\left(r+s\right)}-\alpha \right){\rho }_{t\left(r+s\right)}}\left({\epsilon }_{1}+{\epsilon }_{2}\right),$

${\delta }_{t\left(r+s\right)}<\frac{1}{\sqrt{1+\frac{{\left(\sqrt{r+s}+\alpha \right)}^{2}\left({\left(1+\frac{\sqrt{2}}{2}\right)}^{2}\left(t\left(r+s\right)-\left(r+s\right)-\sqrt{t\left(r+s\right)-\left(r+s\right)}\right)+1\right)}{\left(r+s\right){\left(t-1\right)}^{2}{\left(\sqrt{r+s}-1\right)}^{2}}}},$ (50)

$\begin{array}{c}{‖{\stackrel{^}{x}}^{DS}-x‖}_{2}\le \left(1+\sqrt{\frac{{\alpha }^{2}}{4\left(r+s\right)}+\frac{\alpha +\sqrt{r+s}}{\sqrt{r+s}}}+\frac{\alpha +\sqrt{2}}{2\sqrt{r+s}}\right)\frac{\left(1-\mu \right)\mu \sqrt{t\left(r+s\right)}}{\mu -{\mu }^{2}-{\left(\mu -1\right)}^{2}{\delta }_{t\left(r+s\right)}}\left({\epsilon }_{1}+{\epsilon }_{2}\right)\\ \text{\hspace{0.17em}}+\left(\left(\sqrt{r+s}+\sqrt{\frac{{\alpha }^{2}}{4}+\alpha \sqrt{r+s}+\left(r+s\right)}+\frac{\alpha +\sqrt{2}}{2}\right)\left(\frac{2{\delta }_{t\left(r+s\right)}\left(1-2\mu \right)}{\left(\mu -{\mu }^{2}-{\left(\mu -1\right)}^{2}{\delta }_{t\left(r+s\right)}\right)\left(\sqrt{r+s}+\alpha \right)}\\ \text{\hspace{0.17em}}+\sqrt{\frac{2\left(1-2\mu \right){\delta }_{t\left(r+s\right)}}{\left(\mu -{\mu }^{2}-{\left(\mu -1\right)}^{2}{\delta }_{t\left(r+s\right)}\right){\left(\sqrt{r+s}+\alpha \right)}^{2}}}\right)+\frac{\sqrt{2\left(r+s\right)}}{2}\right)\frac{{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}}{\sqrt{r+s}}.\end{array}$ (51)

${‖{Α}^{Τ}Αh‖}_{\infty }\le {‖{Α}^{Τ}\left(Α{\stackrel{^}{x}}^{DS}-y\right)‖}_{\infty }+{‖{Α}^{Τ}\left(y-Αx\right)‖}_{\infty }\le {\epsilon }_{1}+{\epsilon }_{2}$ (52)

$〈Α\left({h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}}\right),Αh〉=〈{h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}},{Α}^{Τ}Αh〉\le {‖{h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}}‖}_{1}{‖{Α}^{Τ}Αh‖}_{\infty }\le \sqrt{t\left(r+s\right)}{‖{h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}}‖}_{2}\left({\epsilon }_{1}+{\epsilon }_{2}\right).$ (53)

$\begin{array}{l}\underset{i=1}{\overset{N}{\sum }}{\lambda }_{i}{‖Α\left(\left(\frac{1}{2}-\mu \right)\left({h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}}\right)-\frac{1}{2}\mu {u}^{\left(i\right)}+\mu h\right)‖}_{2}^{2}\\ \le \left(1+{\delta }_{t\left(r+s\right)}\right)\left({\left(\frac{1}{2}-\mu \right)}^{2}{‖{h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}}‖}_{2}^{2}+\frac{{\mu }^{2}}{4}\underset{i=1}{\overset{N}{\sum }}{\lambda }_{i}{‖{u}^{\left(i\right)}‖}_{2}^{2}\right)+\left(1-\mu \right)\mu \sqrt{t\left(r+s\right)}{‖{h}_{\stackrel{¯}{{T}_{0}}}+{h}_{{\text{W}}_{1}}‖}_{2}\left({\epsilon }_{1}+{\epsilon }_{2}\right).\end{array}$

$\begin{array}{c}{‖h‖}_{2}\le \left(1+\sqrt{\frac{{\alpha }^{2}}{4\left(r+s\right)}+\frac{\alpha +\sqrt{r+s}}{\sqrt{r+s}}}+\frac{\alpha +\sqrt{2}}{2\sqrt{r+s}}\right)\frac{\left(1-\mu \right)\mu \sqrt{t\left(r+s\right)}}{\mu -{\mu }^{2}-{\left(\mu -1\right)}^{2}{\delta }_{t\left(r+s\right)}}\left({\epsilon }_{1}+{\epsilon }_{2}\right)\\ \text{\hspace{0.17em}}+\left(\left(\sqrt{r+s}+\sqrt{\frac{{\alpha }^{2}}{4}+\alpha \sqrt{r+s}+\left(r+s\right)}+\frac{\alpha +\sqrt{2}}{2}\right)\left(\frac{2{\delta }_{t\left(r+s\right)}\left(1-2\mu \right)}{\left(\mu -{\mu }^{2}-{\left(\mu -1\right)}^{2}{\delta }_{t\left(r+s\right)}\right)\left(\sqrt{r+s}+\alpha \right)}\\ \text{\hspace{0.17em}}+\sqrt{\frac{2\left(1-2\mu \right){\delta }_{t\left(r+s\right)}}{\left(\mu -{\mu }^{2}-{\left(\mu -1\right)}^{2}{\delta }_{t\left(r+s\right)}\right){\left(\sqrt{r+s}+\alpha \right)}^{2}}}\right)+\frac{\sqrt{2\left(r+s\right)}}{2}\right)\frac{{‖{x}_{{\stackrel{¯}{{T}_{0}}}^{c}}‖}_{1}}{\sqrt{r+s}}.\end{array}$

${‖{\stackrel{^}{x}}^{DS}-x‖}_{2}\le \left(1+\sqrt{\frac{{\alpha }^{2}}{4\left(r+s\right)}+\frac{\alpha +\sqrt{r+s}}{\sqrt{r+s}}}+\frac{\alpha +\sqrt{2}}{2\sqrt{r+s}}\right)\frac{\left(1-\mu \right)\mu \sqrt{t\left(r+s\right)}}{\mu -{\mu }^{2}-{\left(\mu -1\right)}^{2}{\delta }_{t\left(r+s\right)}}\left({\epsilon }_{1}+{\epsilon }_{2}\right),$

4. 结论

NOTES

*第一作者。

#通讯作者。

 [1] Candès, E.J., Romberg, J.K. and Tao, T. (2006) Stable Signal Recovery from Incomplete and Inaccurate Measurements. Communications on Pure and Applied Mathematics, 59, 1207-1223. https://doi.org/10.1002/cpa.20124 [2] Donoho, D.L. (2006) Compressed Sensing. IEEE Transactions on Infor-mation Theory, 52, 1289-1306. https://doi.org/10.1109/TIT.2006.871582 [3] Donoho, D.L., Elad, M. and Temlyakov, V.N. (2006) Stable Re-covery of Sparse over Complete Representations in the Presence of Noise. IEEE Transactions on Information Theory, 52, 6-18. https://doi.org/10.1109/TIT.2005.860430 [4] Cai, T.T. and Zhang, A. (2014) Sparse Representation of a Polytope and Recovery of Sparse Signals and Low-Rank Matrices. IEEE Transactions on Information Theory, 60, 122-132. https://doi.org/10.1109/TIT.2013.2288639 [5] Zhang, R. and Li, S. (2018) A Proof of Conjecture on Restricted Isometry Property Constants . IEEE Transactions on Information Theory, 64, 1699-1705. https://doi.org/10.1109/TIT.2017.2705741 [6] Chartrand, R. (2007) Exact Reconstruction of Sparse Signals via Nonconvex Minimization. IEEE Signal Processing Letters, 14, 707-710. https://doi.org/10.1109/LSP.2007.898300 [7] Chartrand, R. and Staneva, V. (2008) Restrictedisometry Properties and Nonconvex Compressive Sensing. Inverse Problems, 24, Article ID: 035020. https://doi.org/10.1088/0266-5611/24/3/035020 [8] Zhang, R. and Li, S. (2019) Optimal RIP Bounds for Sparse Signals Recovery via Minimization. Applied and Computational Harmonic Analysis, 47, 566-584. https://doi.org/10.1016/j.acha.2017.10.004 [9] Ge, H.M., Wen, J.M. and Chen, W.G. (2018) The Null Space Property of the Truncated -Minimization. IEEE Signal Processing Letters, 25, 1261-1265. https://doi.org/10.1109/LSP.2018.2852138 [10] Lou, Y. and Yan, M. (2016) Fast Minimization via a Proximal Operator. Journal of Scientific Computing, 74, 767-785. https://doi.org/10.1007/s10915-017-0463-2 [11] Wang, W.D. and Wang, J.J. (2019) An Improved Sufficient Con-dition of Minimisation for Robust Signal Recovery. Electronics Letters, 55, 1199-1201. https://doi.org/10.1049/el.2019.2205 [12] Wen, J., Weng, J., Tong, C., Ren, C. and Zhou, Z. (2019) Sparse Signal Recovery with Minimization of 1-Norm Minus 2-Norm. IEEE Transactions on Vehicular Technology, 68, 6847-6854. https://doi.org/10.1109/TVT.2019.2919612 [13] Yan, L., Shin, Y. and Xiu, D. (2017) Sparse Approximation Us-ing Minimization and Its Application to Stochastic Collocation. SIAM Journal on Scientific Computing, 39, A299-A254. https://doi.org/10.1137/15M103947X [14] Ge, H., Chen, W. and Ng, M.K. (2021) New Rip Analysis for Minimization Methods. SIAM Journal on Imaging Sciences, 14, 530-557. https://doi.org/10.1137/20M136517X [15] Lai, M.J., Xu, Y. and Yin, W. (2013) Improved Iteratively Reweighted Least Squares for Unconstrained Smoothed Minimization. SIAM Journal on Numerical Analysis, 51, 927-957. https://doi.org/10.1137/110840364 [16] Li, P., Chen, W., Ge, H. and Ng, M.K. (2020) Minimization Methods for Signal and Image Reconstruction with Impulsive Noise Removal. Inverse Problems, 36, Article ID: 055009. https://doi.org/10.1088/1361-6420/ab750c [17] Ge, H. and Li, P. (2022) The Dantzig Selector: Recovery of Signal via Minimization. Inverse Problems, 38, Article ID: 015006. https://doi.org/10.1088/1361-6420/ac39f8 [18] Jacques, L. (2010) A Short Note on Compressed Sensing with Par-tially Known Signal Support. Signal Processing, 90, 3308-3312. https://doi.org/10.1016/j.sigpro.2010.05.025 [19] Chen, W.G. and Li, Y.L. (2019) Recovery of Signals under the Condition on RIC and ROC via Prior Support Information. Applied and Computational Harmonic Analysis, 46, 417-430. https://doi.org/10.1016/j.acha.2018.02.003 [20] Ince, T., Nacaroglu, A. and Watsuji, N. (2013) Noncon-vex Compressed Sensing with Partially Known Signal Support. Signal Processing, 93, 338-344. https://doi.org/10.1016/j.sigpro.2012.07.011 [21] Blanchard, J.D. and Thompson, A. (2010) On Support Sizes of Restricted Isometry Constants. Applied and Computational Harmonic Analysis, 29, 382-390. https://doi.org/10.1016/j.acha.2010.05.001 [22] Donoho, D.L. and Huo, X. (2001) Uncertainty Principles and Ideal Atomic Decomposition. IEEE Transactions on Information Theory, 47, 2845-2862. https://doi.org/10.1109/18.959265 [23] Yin, P., Lou, Y., He, Q. and Xin, J. (2015) Minimization of for Compressed Sensing. SIAM Journal on Scientific Computing, 37, A536-A563. https://doi.org/10.1137/140952363