物理化学进展  >> Vol. 1 No. 1 (May 2012)

乙醇在铂和钯电极上的电化学氧化比较
Performance Comparison of Ethanol Oxidation on Pt and Pd Electrodes

DOI: 10.12677/japc.2012.11001, PDF, HTML, XML, 下载: 2,671  浏览: 10,042  国家自然科学基金支持

作者: 卓业争:广州化学试剂;徐常威*:广州大学化学化工学院

关键词: 燃料电池醇电化学氧化乙醇计时电量
Fuel Cells; Alcohol Electrooxidation; Ethanol; Palladium; Chronocoulometry

摘要: 用循环伏安和计时电量法研究了乙醇在Pt和Pd电极上的电化学氧化活性。用不同扫描速度下的循环伏安研究得出乙醇在Pt和Pd电极上的电化学氧化都是扩散控制的不可逆反应。用计时电量法研究乙醇在Pt和Pd电极上的电化学氧化时,发现不同电位下失电子数是不同的,在Pt电极上在–0.30 V有最大值,在Pd电极上在–0.35 V有最大值,这个结果说明乙醇在Pd电极上比在Pt电极上更容易被电化学氧化。 The oxidation activity of ethanol on Pt and Pd electrodes has been studied by cyclic voltammogram and chronocoulometry in alkaline medium. The cyclic voltammogram with different scan rate shows that ethanol elec-trooxidation is an irreversible charge-transport and controlled by a diffusion process on all electrodes. The chronocou-lometry shows that the number of transfer electrons for ethanol oxidation changes with different potential. The number of transfer electrons is the highest value at –0.30 V on the Pt electrode and –0.35 V on the Pd electrode. The result shows that ethanol is more easily to electrochemically oxidize on the Pd electrode than that on the Pt electrode.

文章引用: 卓业争, 徐常威. 乙醇在铂和钯电极上的电化学氧化比较[J]. 物理化学进展, 2012, 1(1): 1-5. http://dx.doi.org/10.12677/japc.2012.11001

参考文献

[1] 衣保廉. 燃料电池——高效、环境友好的发电方式[M]. 北京: 化学工业出版社, 2000.
[2] G. S. Martin, D. Thomas, P. B. Guy, et al. Air pollution and climate-forcing impacts of a global hydrogen economy. Science, 2003, 302(5645): 624-627.
[3] 王新东, 谢晓峰, 王萌等. 直接甲醇燃料电池关键材料与技术[J]. 化学进展, 2011, 23(2): 509-519.
[4] C. W. Xu, L. Q. Cheng, Y. L. Liu, et al. Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochemistry Communications, 2007, 9(5): 997-1001.
[5] K. Nishimura, K. Kunimatsu, K. Machida, et al. Electrocatalysis on Pd + Au alloy electrodes: Part Ш. IR spectroscopic studies on the surface species derived from CO and CH3OH in NaOH solu-tion. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 260(1): 167-179.
[6] C. W. Xu, Z. Q. Tian, S. P. Jiang, et al. Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol elec- trooxidation in alkaline media. Electrochimica Acta, 2008, 53(5): 2610-2618.
[7] S. W. Xie, S. Chen, C. W. Xu, et al. Comparison of alcohol elec- trooxidation on Pt and Pd electrodes in alkaline medium. Inter-national Journal of Electrochemical Science, 2011, 6(4): 882 -888.
[8] N. Tian, Z. Y. Zhou, S. G. Sun, et al. Direct electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation. Journal of the American Chemical Society, 2010, 132(22): 7580-7581
[9] C. Bianchini, P. K. Shen. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chemical Reviews, 2009, 109(9): 4183-4206.
[10] J. C. Huang, Z. L. Liu, C. B. He, et al. Synthesis of PtRu nanoparticles from the hydrosilylation reaction and application as catalyst for direct methanol fuel cell. The Journal of Physical Chemistry B, 2005, 109(35): 16644-16649.
[11] F. C. Anson. Application of potentiostatic current integration to the study of the adsorption of cobalt(III)-(ethylenedinitrilo(tetraacetate) on mercury electrodes. Analytical Chemistry, 1964, 36(4): 932- 934.
[12] A. J. Bard, L. R. Faulkner. Electrochemical methods. Hoboken: John Wiley & Sons, 2001: 33, 195, 222, 223, 226, 253, 298.
[13] 阿伦 J. 巴德,拉里 R. 福克纳著, 邵元华, 朱果逸, 董献堆 等译. 电化学方法原理和应用(第二版)[M]. 北京: 化学工业出版社, 2005: 145-146.
[14] Y. Z. Su, C. W. Xu, J. P. Liu, et al. Electrooxidation of 2-pro- panol compared ethanol on Pd electrode in alkaline medium. Journal of Power Sources, 2009, 194(1): 295-297.