在实际行驶工况下两级吸收/压缩混合制冷循环——实用价值分析
Double-Stage System of Absorption-Compression Hybrid Refrigeration Cycle in Real Driving Conditions ——Analysis of Practical Value
DOI: 10.12677/MET.2013.21003, PDF, HTML, 下载: 2,858  浏览: 7,044 
作者: 隋 意*, 徐士鸣:大连理工大学能源与动力学院,大连;周月辉:中海石油环保服务(天津)有限公司,天津
关键词: 节能技术发动机废热(废气与冷却液)双级混合制冷循环Energy-Saving Technology; Waste Heat of Engine (Waste Gas and Cooling Water); Double-Stage Hybrid Refrigeration Cycle
摘要: 对前人的单级吸收/压缩混合制冷循环进行改进与优化,提出两级吸收/压缩混合制冷循环系统,高低压发生器以倒串联方式排列。利用发动机废热(废气与冷却液)驱动吸收制冷子循环。进行设计工况(空气温度35℃,冷凝温度55℃,制冷剂蒸发温度3℃,制冷负荷30 kW)以R124-DMAC工质对为制冷剂的热力循环计算。当车速 ≥ 23 KM/H时吸收子循环开始提供制冷量,当车速 ≥ 85 KM/H时,制冷量全部来自于吸收制冷子循环。并将此系统带入到实际道路工况中进行实用价值分析,分析表明1辆公交车1天的节约量为2.17 × 104 KJ,此节约量对燃油的节省是非常可观的。
Abstract: Based on the improvement and optimization of the previous single stage, absorption-compression mixed re- frigerant cycle, two-stage absorption/compressed mixed refrigerant circulating system was proposed in which the high and low voltage generator was arranged in an inverted tandem and the absorption-refrigeration sub-cycle was driven by engine waste heat (exhaust gas and cooling liquid). The system was carried out the thermodynamic cycle calculation with R124-DMAC working fluid as refrigerant in the design conditions (air temperature 35°C, condensing temperature 55°C, the refrigerant evaporation temperature 3°C, the cooling load 30 kW). It found that when speed ≥ 23 KM/H, the absorption sub-cycle begin to provide cooling capacity; when speed ≥ 85 KM/H, all cooling capacity come from the absorption refrigeration sub-cycle. The practical value analysis was also carried out by bringing it into the actual road conditions, the results showed that the savings of a bus per day is 2.17 × 104 KJ, which is a quite considerable value for the fuel savings.
文章引用:隋意, 徐士鸣, 周月辉. 在实际行驶工况下两级吸收/压缩混合制冷循环——实用价值分析[J]. 机械工程与技术, 2013, 2(1): 16-24. http://dx.doi.org/10.12677/MET.2013.21003

参考文献

[1] 杨培毅. 汽车余热空调的研究现状[J]. 流体工程, 1993, 21(6): 54-59.
[2] A. D. Althouse. 彦启森, 译. Modern refrigeration and air con- ditioning[M]. 上海: 上海交通大学出版社, 2001.
[3] M. Mo-stafavi, B. Agnew. Thermodynamic analysis of charge air cooling of diesel engine by an exhaust gases-operated absorption refrigeration unit-turbocharged engine with combined pre- and inter-cooling. SAE (971805), 1997.
[4] M. Salim. Technical potential for thermally driven mobile APC system. SAE (200120120297), 2012.
[5] I. Horuz. An alternative road transport refrigeration. Transac- tions of Engineer-ing and Environmental Science, 1998, 22: 211-222.
[6] 路明, 徐士鸣. 汽车尾气余热制冷循环特性[J]. 制冷技术, 2010, 4: 10-13.
[7] 刘福森, 徐士鸣. 废热/动力联合驱动的混合制冷循环特性分析[J]. 热科学与技术, 2012, 11(2): 148-155.
[8] 孙宏图. 基于循环工况的城市公交客车动力传动系统参数研究[D]. 大连: 大连理工大学, 2009.
[9] 焦其伟. 大客车发动机热平衡分析与冷却水热量的利用计算[D]. 济南: 山东大学, 2008.
[10] 李见波. 车速变化对吸收/压缩混合制冷循环的影响[J]. 吉林大学学报(工学版), 2013, 43(2): 291-297.