MP  >> Vol. 1 No. 1 (May 2011)

    The Properties of Microscopic Particles Described by Nonlinear Schrödinger Equation in Nonlinear Quantum Systems

  • 全文下载: PDF(590KB) HTML    PP.1-16   DOI: 10.12677/mp.2011.11001  
  • 下载量: 2,684  浏览量: 11,426   国家科技经费支持



Quantum Mechanics; Nonlinear Schrödinger Equation; Wave-Corpuscle Duality; Localization


原有量子力学的由Schrödinger方程不能很好地描述微观粒子的局域特性和波-粒二象性,因此,量子力学必须改进和发展。在非线性系统中我们考虑了粒子之间或它与背景场之间的非线性相互作用,于是必须用非线性Schrödinger方程去描述的微观粒子的状态。至此,微观粒子的状态和特征相对于线性系统发生了根本性的变化。在这种情况下不论外势场如何变化,但非线性Schrödinger方程都能给出具有波-粒二象特性的解,它由包络孤子和一个载波组成,有一个具有确定的位置的质心;同时,微观粒子此时也具有一个确定的质量,能量和动量,和它们遵守的质量,能量和动量守恒定律,在外场作用时粒子是稳定的,并满足经典运动方程和遵守哈密顿方程和拉格朗日方程。于是用非线性Schrödinger方程去描述的微观粒子具有一个明显的的局域特性和波-粒二象性, 从而彻底消除了原有量子力学存在近一个世纪的困难和问题。基于这些新的结果我们可建立起完整和系统的非线性量子力学理论体系,推动量子力学的发展。因此这一研究具有重要意义。

In original quantum mechanics the Schrödinger equation is, in essence, a wave equation, wherein the microscopic particles depicted have only a wave feature, and not a corpuscle nature. These descriptors do not agree only with the Broglie relation of wave-corpuscle duality, but also with experimental results and the traditional knowledge of particle concept. Meanwhile, the theory gives only some approximate solutions. Thus a series of contradictory representations and problems occur in quantum mechanics, which have re-sulted in durative disputations focused on the area of physics and have not led to any united conclusions until now. The only way to solve these problems and difficulties is to develop the quantum mechanics. We inves-tigate in detail wave-corpuscle duality of microscopic particles described by a nonlinear Schrödinger equa-tion in nonlinear quantum systems. Concretely speaking, we here study the properties of the solution of the nonlinear Schrödinger equation, the stability of microscopic particles, invariance and conservation laws of motion of particles, the Hamiltonian principle of particle motion and corresponding Lagrangian and Hamilton equations, the classical rule of microscopic particle motion, and so on. Studied results show that the solution of the nonlinear Schrödinger equation depicting microscopic particles is a soliton and have a wave-corpuscle duality, microscopic particles have always a mass center and possess determinant positions, sizes, mass, mo-mentum, energy and form, their mass, momentum and energy satisfy corresponding conservation laws, their dynamic states can be described by both nonlinear Schrödinger equation and classical Lagrangian and Ham-ilton equations, their motions obey the classical Newton-type law of motion. These properties indicate that the microscopic particles described by a nonlinear Schrödinger equation have a corpuscle nature. However, the solutions of dynamic equation are some solitary waves which are accompanied by a carrier wave to propagate in space-time, and possess certain frequency and wave speed. Thus microscopic particles described by nonlinear quantum mechanics have also wave feature. Thus we can affirm that the microscopic particles depicted by a nonlinear Schrödinger equation have a perfect wave-corpuscle duality, which are in essence different from those in linear quantum mechanics. Based on these results we can establish a new nonlinear quantum mechanics, which can solve these difficulties and problems disputed for about a century in linear quantum mechanics.

庞小峰. 非线性量子系统中由非线性Schrödinger方程描述的微观粒子的特性[J]. 现代物理, 2011, 1(1): 1-16.


[1] D. Bohr, J. Bub. A proposed solution of the measurement prob- lem in quantum mechanics. Phys. Rev., 1935, 48(1): 169-174.
[2] L. de Broglie. Nonlinear Wave Mechanics. Amsterdam: Elsevier, 1960: 35-90.
[3] E. Schrödinger. Collected Papers on Wave Mechanics. Blackie and Son, 1928: 54-103.
[4] E. Schrödinger. Die gegenwartige situation in der quantenmechanik. Die Naturwissenschaften, 1935, 23(48): 807-812, 823-828, 844-849.
[5] E. Schrödinger. An undulatory theory of the mechanics of atoms and molecules, Phys. Rev. 1926, 28(10): 1049-1070.
[6] E. Schrödinger. The present situation in quantum mechanics, a translation of translation of Schrödinger “Catparadox paper”. Proc. Cambridge Puil. Soc., 1935, 31(4): 555-561.
[7] W. Z. Heisenberg. Über die quantentheoretische umdeutung kinematischer und mechanischer beziehungen. Zeitschrift der Physik, 1925, 33(8): 879-893.
[8] W. Heisenberg, H. Euler. Folgerungen aus der diracschen theorie des positrons. Zeitschr. Phys., 1936, 98(11-12):714-732.
[9] M. Born, L. Infeld. Foundations of the new field theory. Proc. Roy. Soc. A, 1934, 144(3): 425-430.
[10] M. Born, L. Infeld. A useful review of the theory may be found in M Born. Ann Inst Poincar, 1939, 7(2): 155-161.
[11] D. Bohm. Quantum Theory. New Jersey: Prentice-Hall Englewood Cliffs, 1951.
[12] P. A. M. Dirac. Quantum theory of localizable dynamical systems. Phys. Rev. 1948, 73(8): 1092-1099.
[13] P. A. Dirac. The Principles of Quantum Me-chanics. Oxford, 1967: 21-136.
[14] S. Diner, D. Farque, G. Lochak et al. The Wave-Particle Dualism. Dordrecht: Riedel, 1984: 23-79.
[15] J. Potter. Quantum Mechanics. North-Holland Publishing Co., 1973: 45-112.
[16] M. Jammer. The Concettual Development of Quantum Mecha- nics. Los Angeles: Tomash, 1989: 32-135.
[17] L. R. Roth, A. Inomata. Fundamental Questions in Quantum Mechanics. New York: Gordon and Breach, 1986: 45-143.
[18] M. Ferrero, A. Van der Merwe. New Developments on Fundamental Problems in Quantum Physics. Dordrecht: Kluwer, 1997: 51-147.
[19] M. Ferrero, A. Van der Merwe. Fundamental Problems in Quantum Physics. Dordrecht: Kluwer, 1995: 12-87.
[20] 德布罗意. 非线性波动力学(中译本)[M]. 北京: 高等教育出版社, 1960: 5-67.
[21] 庞小峰. 非线性量子理论的问题(讲义)[M]. 成都: 四川师范大学出版, 1985: 12-98.
[22] 庞小峰. 非线性量子力学理论[M]. 重庆: 重庆出版社, 1994: 14-213.
[23] 庞小峰. 非线性量子的基本原理与理论. 刘洪主编, 新学科研究[M]. 北京: 中国科学技术出版社, 1989: 17-21.
[24] 庞小峰. 非线性量子的基本原理[J]. 潜科学杂志, 1986, 2(3): 18-22.
[25] 庞小峰. 非线性系统中微观粒子的运动规律[J]. 世界科技研究与发展, 2003, 24(1): 54-60, 79-85.
[26] 庞小峰, 在非线性系统中的微观粒子的特性和非线性量子力学[A]. 《科学学术论文集(物理及其应用)》[C]. 北京: 原子能出版社, 2006: 78-91
[27] 庞小峰. 线性量子力学的困难和非线性量子力学理论的建立[J]. 中国基础科学, 2003, 10(5): 35-39.
[28] X. F. Pang. Quantum Mechanics in Nonlinear Sys-tems. World Scientific Publishing Co., Singapore, 2005: 10-237.
[29] X. F. Pang. Features and states of microscopic particles in nonlinear quantum-mechanics systems. Frontiers of Physics in China, 2008, 3(2): 413-489.
[30] X. F. Pang. Investigations of properties and essences of macroscopic quantum effects in superconductors by nonlinear quantum mechanics. Nature Sciences, 2007, 2(1): 42-47.
[31] 庞小峰. 孤子物理学[M]. 成都: 四川科技出版社, 2003: 48- 176.
[32] 郭柏灵, 庞小峰. 孤立子[M]. 北京: 科学出版社, 1987: 345-363.
[33] V. E. Zakharov, A. B. Shabat. Exact theory of two-dimensional self-focusing and one dimensional sel-modulation of waves in nonlinear medim. Sorv. Phys JETP, 1972, 34(1): 62-69.
[34] V. E. Zakharov, A. B. Shabat. Interaction between solitons in a stable medium. Sorv. Phys JETP, 1973, 37(5): 823-828.
[35] H. H. Chen, C. S. Liu. Solitons in nonuniform media. Phys. Rev. Lett., 1976, 37(11): 693-696.
[36] H. H. Chen, C. S. Liu. Nonlinear wave and soliton propagation in media with arbitrary inhomogeneities. Phys. Fluids, 1978, 21(3): 377-380.
[37] C. Sulem, P. L. Sulem. The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse. New York: Springer, 1999: 11-189.