PM  >> Vol. 3 No. 3 (May 2013)

    关于C*-代数的算子空间投影张量积的一个注记
    A Note on the Operator Space Projective Tensor Product of C*-Algebras

  • 全文下载: PDF(168KB) HTML    PP.176-180   DOI: 10.12677/PM.2013.33026  
  • 下载量: 2,232  浏览量: 4,580  

作者:  

季井先,陈培鑫:南京理工大学理学院

关键词:
算子空间投影张量积C*-代数Operator Space; Projective Tensor Product; C*-Algebras

摘要:

对于C*-代数,我们讨论Banach*-代数的一些性质。接着我们证明C*-代数的算子空间投影张量积保持*-同态映射并给出Banach*-代数的一个全局性性质。最后得到一个关于对偶空间的收敛性质的刻画。

For C*-algebras  and , we discuss some properties of the Banach*-algebra . Then, we prove that the operator space projective tensor product of C*-algebras preserves *-homomorphism and a universal property of Banach*-algebra  will be given. At last, a characterization of the convergence property of dual space  is also obtained.

文章引用:
季井先, 陈培鑫. 关于C*-代数的算子空间投影张量积的一个注记[J]. 理论数学, 2013, 3(3): 176-180. http://dx.doi.org/10.12677/PM.2013.33026

参考文献

[1] Z. J. Ruan. Subspaces of C*-algebras. Journal of Functional Analysis, 1988, 76: 217-230.
[2] D. P. Blecher, V. I. Paulsen. Tensor product of operator spaces. Journal of Functional Analysis, 1991, 99: 262-292.
[3] E. G. Effros, Z. J. Ruan. On approximation properties for operator spaces. International Journal of Mathematics, 1990, 1(2): 163-187.
[4] E. G. Effros, Z. J. Ruan. Self duality for the Haagerup tensor product and Hilbert space factorization. Journal of Functional Analysis, 1991, 100(2): 257-284.
[5] A. Kumar. Operator space projective tensor product of C*-algebras. Mathematische Zeitschrift, 2001, 237: 211-217.
[6] R. Jain, A. Kumar. Operator space tensor products of C*-algebras. Mathematische Zeitschrift, 2008, 260: 805-811.
[7] M. Takesaki. Theory of operator algebras I. Berlin: Springer Verlag, 1979.
[8] S. D. Allen, A. M. Sinclair and R. R. Smith. The ideal structure of the Haagerup tensor product of C*-algebras. Journal für die Reine und Angewandte Mathematik, 1993, 1993(422): 111-148.
[9] E. G. Effros, Z. J. Ruan. Operator spaces. London: Mathematical Society Monographs, New Series 23; New York: The Clarenon Press; Oxford: Oxford University Press, 2000.
[10] E. G. Effros, Z.-J. Ruan. A new approach to operator space. Canadian Mathematical Bulletin, 1991, 34(3): 329-337.
[11] G. J. Murphy. C*-algebras and operator theory. Waltham: Academic Press, 1990.