铁盐量对羧基化磁性纳米颗粒粒径的影响
The Influence of Iron Salts on the Diameters of Carboxyl-Functionalized Magnetic Nanoparticles
DOI: 10.12677/APP.2013.33013, PDF, HTML, XML, 下载: 3,402  浏览: 9,215 
作者: 王惠丽:宁波大学理学院,宁波;中国科学院宁波材料技术与工程研究所,宁波;郭建军, 许高杰:中国科学院宁波材料技术与工程研究所,宁波;王 军:宁波大学理学院,宁波
关键词: 溶剂热羧基化Fe3O4纳米颗粒磁化强度 Solvothermal Method; Carboxyl-Functionalized; Fe3O4 Nanoparticles;Magnetization
摘要: 本文采用溶剂热法合成了分散性好、尺寸可调、粒径均匀、饱和磁化强度较高的超顺磁性羧基化Fe3O4纳米颗粒。通过改变铁盐量制得了颗粒粒径从200 nm到800 nm可调的羧基化Fe3O4纳米颗粒,并对其形貌、结构及磁性能进行了表征。结果表明:产物为立方晶系的Fe3O4纳米球,其矫顽力及剩余磁化强度均为零,这表明样品在室温下是超顺磁性的。实验中的药品均为无毒或低毒性的,这些均满足了生物医学方面的要求。
Abstract: A solvothermal method is reported to synthesize uniform superparamagnetic carboxyl-functionalized Fe3O4 nanoparticles with good dispersity, tunable particle size and high magnetization. The particle size of the carboxyl-func- tionalized Fe3O4 nanoparticles can be tuned from approximately 200 nm to 800 nm by simply changing the concentration of iron in the reaction. The appearance, structure and magnetism of nanoparticles are characterized. The results show that the products are cubic crystal Fe3O4 nanosphere and the magnetization curves show no remnant magnetization and coercivity, indicating that both samples are superparamagnetic at room temperature. Moreover, the chemical reagents are non-toxic or low toxicity, which meet biomedical requirement.

文章引用:王惠丽, 郭建军, 许高杰, 王军. 铁盐量对羧基化磁性纳米颗粒粒径的影响[J]. 应用物理, 2013, 3(3): 68-71. http://dx.doi.org/10.12677/APP.2013.33013

参考文献

[1] Y. K. Hahn, Z. Jin, H. Kang, et al. Magnetophoretic Immu- noassay of allergen-specific IgE in an enhanced magnetic field gradient. Analytical Chemistry, 2007, 79(6): 2214-2220.
[2] J. Kim, J. E. Lee, J. Lee, et al. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. Journal of the American Chemical Society, 2006, 128(3): 688-689.
[3] A. Jordan, R. Scholz, P. Wust, et al. Magnetic fluid hyperthermia (MFH): Cancertreatment with AC magnetic field induced exci- tation of biocompatible superparamagnetic nanoparticles. Jour- nal of Magnetism and Magnetic Materials, 1999, 201(1-3): 413- 419.
[4] E. Duguet, S. Vasseur, S. Mornet, et al. Magnetic nanoparticles and their applications in medicine. Nanomedicine, 2006, 1(2): 157-168.
[5] H. Wei, E. Wang. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Analytical Chemistry, 2008, 80(6): 2250-2254.
[6] 高倩, 张吉林, 洪广言等. 不同形貌的Fe3O4微–纳米粒子的溶剂热合成[J]. 高等学校化学报, 2011, 32(3): 552-559.
[7] Z. H. Zhou, J. Wang, X. Liu, et al. Synthesis of Fe3O4 nanoparticles from emulsions. Journal of Materials Chemistry, 2001, 11: 1704-1709.
[8] 陈明洁, 张汉昌, 关志荣. 化学共沉淀法制备Fe3O4纳米颗粒的结构和磁性能研究[J]. 材料导报, 2008, 22(12): 94-96.
[9] H. Deng, X. L. Li, Q. Peng, et al. Monodisperse magnetic single-crystal ferrite microspheres. Angewandte Chemie, 2005, 117(18): 2842-2845.
[10] 王保国, 程芹, 朱静等. 磁性Fe3O4/TiO2复合颗粒的研制[J]. 石油化工, 2009, 38(9): 929-934.
[11] J. Ge, Y. Hu and Y. Yin. Highly tunable superparamagnetic colloidal photonic crystals. Angewandte Chemie, 2007, 119(39): 7572-7575.
[12] C. M. Cheng, Y. H. Wen, X. F. Xu, et al. Tunable synthesis of carboxyl-functionalized magnetite nanocrystal clusters with uniform size. Journal of Materials Chemistry, 2009, 19: 8782- 8788.
[13] W. Cheng, K. B. Tang, Y. X. Qi, et al. One-step synthesis of superparamagnetic monodisperse porous Fe3O4 hollow and core- shell spheres. Journal of Materials Chemistry, 2010, 20: 1799- 1805.
[14] J. Liu, Z. K. Sun, Y. H. Deng, et al. Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angewandte Chemie, 2009, 121(32): 5989-5993.
[15] J. Zheng, Z. Q. Liu, X. S. Zhao, et al. One-step solvothermal synthesis of Fe3O4@C core-shell nanoparticles with tunable sizes. Nanotechnology, 2012, 23(16): Article ID: 165601.
[16] H. Wang, Q. W. Chen, Y. F. Yu, et al. Size- and solvent-depen- dent magnetically responsive optical diffraction of carbon-en- capsulated superparamagnetic colloidal photonic crystals. The Journal of Physical Chemistry C, 2011, 115(23): 11427-11434.
[17] J. Ge, Y. Hu, M. Biasini, et al. Superparamagnetic magnetite colloidal nanocrystal clusters. Angewandte Chemie International Edition, 2007, 46(23): 4342-4345.
[18] S. Nasrazadani, A. Raman. The application of infrared spectroscopy to the study of rust systems—II. Study of cation deficiency in magnetite (Fe3O4) produced during its transformation to maghemite (γ-Fe2O3) and hematite (α-Fe2O3). Corrosion Science, 1993, 34(8): 1355-1365.
[19] C. Yang, J. J. Wu and Y. L. Hou. Fe3O4 nanostructures: Synthesis, growth mechanism, properties and applications. Chemical Com- munications, 2011, 47(18): 5130-5141.