激光烧蚀在材料加工中的应用及其机理研究进展I:在加工领域和表面改性纳米光栅方面应用
Progress in Applications and Physical Mechanisms of Laser Ablation in Material Processing I: Application in Materials Processing, Surface Modification and Nanograting
DOI: 10.12677/CMP.2013.22007, PDF, HTML, 下载: 3,458  浏览: 14,133 
作者: 何敏华:华中科技大学物理学院,武汉、武汉工程大学理学院,武汉;关丽:华中科技大学物理学院,武汉、河北大学物理科学与技术学院,保定;张端明*:华中科技大学物理学院,武汉
关键词: 激光烧蚀纳米光栅表面改性脉冲激光沉积Laser Ablation; Nanograting; Surface Modification; Pulsed Laser Deposition
摘要: 本文简要介绍脉冲激光技术的演化和物理基础,激光烧蚀技术在材料加工在传统领域激光打孔、切割、焊接等传统领域方面的应用及其最新发展。同时介绍了该技术在材料表面改性和飞秒激光诱导材料表面周期性结构(纳米光栅)的制备领域的应用及其最新发现。 In the paper, the evolution of the pulse laser technology and its physical mechanism is described briefly, and the new progresses in applications of laser ablation in traditional material processing fields, such as laser drilling, cutting and welding, are focused on. Moreover, the latest developments of laser ablation technology used to the preparation of the surface modification and nanograting are introduced.
文章引用:何敏华, 关丽, 张端明. 激光烧蚀在材料加工中的应用及其机理研究进展I:在加工领域和表面改性纳米光栅方面应用[J]. 凝聚态物理学进展, 2013, 2(2): 42-50. http://dx.doi.org/10.12677/CMP.2013.22007

参考文献

[1] 杨建军.飞秒激光超精细“冷”加工技术及其应用(I)[J]. 激光与光电子学进展, 2004, 41(3): 47-52.
[2] J. Bromberg. The laser in America, 1950-1970. Cambridge: MIT Press, 1991: 202.
[3] R. H. Hohig, J. R. Woolston. Laser-induced emission of elec- trons, ions and neutral atoms from solid surfaces. Applied Phys- ics Letters, 1963, 2(7): 138-139.
[4] J. F. Ready. Development of plume of material vaporized by giant-pulse laser. Applied Physics Letters, 1963, 3(1): 11-13.
[5] H. M. Smith, A. F. Turner. Vacuum deposition thin film using a ruby laser. Applied Optics, 1965, 4(1): 147-148.
[6] R. K. Singh, J. Narayan. Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model. Physical Review B, 1990, 41(13): 8843-8859.
[7] D. P. Norton. Pulsed laser deposition of complex material: Pro- gress towards applications. In: R. Eason, Ed., Pulsed laser deposition of thin films. New York: Wiley-Interscience, 2007: 3.
[8] S. J. Maddox. Fracture mechanics applied to fatigue in welded structure. British Welding Inst. Report E, 1970: 36-70.
[9] E. V. Locke. Apparatus for heat treating a surface. United States Patent 3848104, 1974.
[10] G. Y. Liu, D. J. Toncich and E. C. Harvey. Evaluation of excimer laser ablation of thin Cr film on glass substrate by analysing acoustic emission. Optics and Lasers in Engineering, 2004, 42: 639.
[11] S. K. Lee, S. J. Na. KrF excimer laser ablation of thin Cr film on glass substrate. Applied Physics A, 1999, 68(4): 417-423.
[12] I. S. Ruddock, D. J. Bradley. Bandwidth-limited subpicosecond pulse generation in mode-locked cw dye lasers. Applied Phys- ics Letters, 1976, 29(5): 296-297.
[13] R. L. Fork, B. I. Greene and C. V. Shank. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking. Applied Physics Letters, 1981, 38(9): 671-672.
[14] M. T. Asaki, C. P. Huang, D. Garvey, et al. Generation of 11-fs pulses from a self-mode-locked Ti: Sapphire laser. Optics Letters, 1993, 18(12): 977-979.
[15] U. Keller. Recent developments in compact ultrafast lasers. Nature, 2003, 424(6950): 831-838.
[16] D. Stevenson, B. Agate, X. Tsampoula, et al. Femtosecond optical transfection of cells: Viability and efficiency. Optics Express, 2006, 14(16): 7125-7133.
[17] T. Tajima, G. Mourou. Special topics-accelerators and beams. Physical Review, 2002, 5: 03130121.
[18] M. Huang, F. L. Zhao, Z. Z. Xu, et al. Large area uniform nano- structures fabricated by direct femtosecond laser ablation. Optics Express, 2008, 16(23): 19354-19365.
[19] M. Shinoda, R. R. Gattass and E. Mazur. Femtosecond laser- induced formation of nanometer-width grooves on synthetic sin- gle-crystal diamond surfaces. Journal of Applied Physics, 2009, 105: Article ID: 053102.
[20] A. Y. Vorobyev, C. L. Guo. Enhanced absorptance of gold fol- lowing multipulse femtosecond laser ablation. Physical Review B, 2005, 72: Article ID: 195422
[21] B. N. Chichkov, C. Momma, S. Nolte, et al. Femtosecond, pico- second and nanosecond laser ablation of solids. Applied Physics A, 1996, 63(2): 109-115.
[22] Y. K. Godovsky. Thermophysical properties of polymers. New York: Spring-Verlag, 1992: 28.
[23] J. Lawrence, K. Minami, L. Li, et al. Effect of processing gas in high power diode laser ablation of tile grout. Applied Surface Science, 2002, 186(1): 264-270.
[24] J. Lawrence, L. Li. The influence of shield gases on the surface condition of laser treated concrete. Applied Surface Science, 2000, 168(1): 25-28.
[25] L. G. Hector, R. B. Hetnarski. Thermal stresses in materials due to laser heating, thermal stresses IV. Amsterdam: Elsevier, 1996: 453-531.
[26] J. F. Li, L. Li and F. H. Stott. A three-dimensional numerical model for a convection-diffusion phase change process during laser melting of ceramic materials. International Journal of Heat and Mass Transfer, 2004, 47(25): 5523-5539.
[27] C. Zhang, I. A. Salama and N. R. Quick. One-dimensional tran- sient analysis of volumetric heating for laser drilling. Journal of Applied Physics, 2006, 99: Article ID: 113530.
[28] C. Zhang, N. R. Quick and A. Kar. A model for self-defocusing in laser drilling of polymeric materials. Journal of Applied Phy- sics, 2008, 103: Article ID: 014909.
[29] I. A. Choudhury, S. Shirley. Laser cutting of polymeric materials: An experimental investigation. Optics & Laser Technology, 2010, 42(3): 503-508.
[30] A. Sharma, V. Yadava. Modelling and optimization of cut quality during pulsed Nd:YAG laser cutting of thin Al-alloy sheet for straight profile. Optics & Laser Technology, 2012, 44(1): 159- 168.
[31] B. S. Yilbas, S. Z. Shuja and M. S. J. Hashmi. A numerical solution for laser heating of titanium and nitrogen diffusion in solid. Journal of Materials Processing Technology, 2003, 136(1-3): 12-23.
[32] S. J. Lv, W. Yang. An investigation of pulsed laser cutting of titanium alloy sheet. Optics and Lasers in Engineering, 2006, 44(10): 1067-1077.
[33] D. Triantafyllidis, L. Li and F. H. Stott. Crack-free densification of ceramics by laser surface treatment. Surface and Coatings Technology, 2006, 201(6): 3163-3173.
[34] Y. Zhao, Y. J. Jiang. Effect of KrF excimer laser irradiation on the properties of ZnO thin films. Journal of Applied Physics, 2008, 103: Article ID: 114903.
[35] J. K. Jiao, X. B. Wang. Cutting glass substrates with dual-laser beams. Optics and Lasers in Engineering, 2009, 47(7-8): 860- 864.
[36] S. Yan, Z. Hong, T. Watanabe, et al. CW/PW dual-beam YAG laser welding of steel/aluminum alloy sheets. Optics and Lasers in Engineering, 2010, 48(7-8): 732-736.
[37] W. W. Duley. Laser welding. New York: John Wiley & Sons, 1999: 1.
[38] Y. Vorobyev, C. L. Guo. Femtosecond laser structuring of tita- nium implants. Applied Surface Science, 2007, 253(17): 7272- 7280
[39] Y. Vorobyev, C. Guo. Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals. Journal of Applied Physics, 2008, 103(4): Article ID: 043513.
[40] J. E. Sipe, J. F. Young, J. S. Preston, et al. Laser-induced peri- odic surface structure, I. Theory. Physical Review B, 1983, 27(2): 1141-1154.
[41] J. F. Young, J. S. Preston, H. M. Driel, et al. Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass. Physical Review B, 1983, 27(2): 1155-1172.
[42] M. Oron, G. Sorensen. New experimental evidence of the peri- odic surface structure in laser annealing. Applied Physics Letters, 1979, 35(10): 782-784.
[43] D. J. Ehrlich, S. R. J. Brueck and J. Y. Tsao. Time-resolved mea- surements of stimulated surface polariton wave scattering and grating formation in pulsed-laser-annealed germanium. Applied Physics Letters, 1982, 41(7): 630-932.
[44] J. Reif, F. Costache, M. Henyk et al. Ripples revisited: Non- classical morphology at the bottom of femtosecond laser abla- tion craters in transparent dielectrics. Applied Surface Science, 2002, 24(4): 197-198, 891-895.
[45] R. M. Walser, M. F. Baecker, J. G. Ambrose, et al. Laser and electron beam solid interactions and materials processing. New York: Elsevier, 1981: 177-184.
[46] J. A. Van Vechten. Experimental tests for boson condensation and superconductivity in semiconductors during pulsed beam an- nealing. Solid State Communications, 1981, 39(12): 1285-1291.
[47] Z. H. Li, P. N. Li, J. Q. Fan, et al. Energy accumulation effect and parameter optimization for fabricating of high-uniform and large-area period surface structures induced by femtosecond pulsed laser. Optics and Lasers in Engineering, 2010, 48(1): 64.
[48] M. Bonch-Bruevich, M. N. Libenson, V. S. Makin, et al. Surface electromagnetic waves in optics. Optical Engineering (Bellingham), 1992, 31: 718.
[49] A. M. Ozkan, A. P. Malshe and T. A. Railkar. Femtosecond laser- induced periodic structure writing on diamond crystals and mi- croclusters. Applied Physics Letters, 1999, 75(23): 3716-3718.
[50] B. Tan, K. Venkatakrishnan. A femtosecond laser-induced peri- odical surface structure on crystalline silicon. Journal of Micro- mechanics and Microengineering, 2006, 16(5): 1080-1085.
[51] A. Y. Vorobyev, V. S. Makin and C. L.Guo. Periodic ordering of random surface nanostructures induced by femtosecond laser pulses on metals. Journal of Applied Physics, 2007, 101: Article ID: 034903.
[52] J. C. Wang, C. L. Guo. Formation of extraordinarily uniform peri- odic structures on metals induced by femtosecond laser pulses. Journal of Applied Physics, 2006, 100: Article ID: 023511.
[53] A. Y. Vorobyev, C. L. Guo. Femtosecond laser-induced periodic surface structure formation on tungsten. Journal of Applied Phy- sics, 2008, 104: Article ID: 063523.
[54] H. L. Ma, Y. Guo, M. J. Zhong, et al. Femtosecond pulse laser- induced self-organized nanogratings on the surface of a ZnSe crystal. Applied Physics A, 2007, 89(3): 707-709.
[55] L. Sudrie, M. Franco, B. Prade and A. Mysyrowicz. Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses. Optics Communications, 1999, 171(4- 6): 279-284.
[56] S. H. Cho, H. Kumagai and K. Midorikawa. Fabrication of inter- nal diffraction gratings in planar silica plates using low-density plasma formation induced by a femtosecond laser. Nuclear Instruments and Methods in Physics Research Section B, 2002, 197(1): 73-82.
[57] A. Y. Vorobyev, A. N. Topkov, O. V. Gurin, et al. Enhanced absorption of metals over ultrabroad electromagnetic spectrum. Applied Physics Letters, 2009, 95: Article ID: 121106.