基于自组装法合成一维纳米功能材料的研究进展
Progress of the Study of Self-Assembly 1D Nano-Functional Materials
DOI: 10.12677/CMP.2013.22008, PDF, HTML, 下载: 4,326  浏览: 19,034 
作者: 公茂刚*:堪萨斯大学化学系,堪萨斯,美国、青岛大学物理科学学院,青岛
关键词: 自组装纳米功能材料Self-Assembly; Nano-Functional Materials
摘要: 低维纳米材料制备科学和技术研究的一个重要趋势是加强控制工程的研究,包括纳米材料尺寸、形状、表面、微结构的控制。目前一维纳米结构阵列的研究热点主要集中在硅纳米线、碳纳米管和ZnO纳米线/纳米带。在众多制备一维纳米材料的方法中,化学自组装法是制备工艺较简单、成本较低、最有可能实现大规模生产的方法。 The important trend of preparation sciences and technology research of low dimensional nanomaterials is to strengthen the control engineering research, including size, shape, surfaces, microstructure control. There are three most representing one-dimensional nanostructures that are being actively studied in nanotechnology: silicon nanowires, car- bon nanotubes, and ZnO nanowire/nanobelts. In many of the preparation methods, the chemical self-assembly method is the simplest, lowest cost and most likely to achieve large-scale production methods.
文章引用:公茂刚. 基于自组装法合成一维纳米功能材料的研究进展[J]. 凝聚态物理学进展, 2013, 2(2): 51-67. http://dx.doi.org/10.12677/CMP.2013.22008

参考文献

[1] C. A. Mirkin, R. L. Letsinger, R. C. Mucic and J. J. Storhoff. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996, 382(6592): 607-609.
[2] A. K. Boal, V. M. Rotello. Fabrication and self-optimization of multivalent receptors on nanoparticle scaffolds. Journal of the American Chemical Society, 2000, 122(4): 734-735.
[3] F. R. Caruso, H. Mohwald. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science, 1998, 282(5391): 1111-1114.
[4] R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney and R. G. Osifchin. Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters. Science, 1996, 273(5282): 1690-1693.
[5] V. Patil, K. S. Mayya, S. D. Pradhan and M. Sastry. Evidence for novel interdigitated bilayer formation of fatty acids during three- dimensional self-assembly on silver colloidal particles. Journal of the American Chemical Society, 1997, 119: 9281-9282.
[6] J. Bico, B. Roman, L. Moulin and A. Boudaoud. Adhesion: Ela- stocapillary coalescence in wet hair. Nature, 2004, 432(7018): 690-690.
[7] 公茂刚, 许小亮, 曹自立, 刘远越, 朱海明. 两步法制备超疏水性ZnO纳米棒薄膜[J]. 物理学报, 2009, 58: 1885-1889.
[8] Z. L. Wang. ZnO nanowire and nanobelt platform for nanotech- nology. Materials Science and Engineering R, 2009, 64(1): 33- 71.
[9] W. Lin, Y. H. Xiu, H. J. Jiang, R. W. Zhang, O. Hildreth, K. S. Moon and C. P. Wong. Self-assembled monolayer-assisted che- mical transfer of in situ functionalized carbon nanotubes. Journal of the American Chemical Society, 2008, 130(30): 9636-9637.
[10] X. Y. Kong, Z. L. Wang. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Letters, 2003, 3(12): 1625-1631.
[11] N. B. Bowden, M. Weck, I. S. Choi and G. M. Whitesides. Mole- cule-mimetic chemistry and mesoscale self-assembly. Accounts of Chemical Research, 2001, 34(3): 231-238.
[12] V. Schmidt, J. V. Wittemann and U. Gosele. Growth, thermodynamics, and electrical properties of silicon nanowires. Chemical Reviews, 2010, 110(1): 361-388.
[13] R. S. Wagner, W. C. Ellis. Vapor-liquid-solid mechanism of sin- gle crystal growth. Applied Physics Letters, 1964, 4(5): 89-90.
[14] R. S. Wagner, W. C. Ellis. Institute of metals division: The vapor- liquid-solid mechanism of crystal growth and its application to silicon. Transactions of Metals Society AIME, 1965, 233: 1053- 1064.
[15] Y. W. Wang, V. Schmidt, S. Senz and U. Gosele. Epitaxial growth of silicon nanowires using an aluminium catalyst. Nature Nanotechnology, 2006, 1(3): 186-189.
[16] J. Kikkawa, Y. Ohno and S. Takeda. Growth rate of silicon nanowires. Applied Physics Letters, 2005, 86: 1-3.
[17] S. G. Ihn, J. I. Song. Morphology- and orientation-controlled gallium arsenide nanowires on silicon substrates. Nano Letters, 2007, 7(1): 39-44.
[18] Y. F. Wang, K. K. Lew, T. T. Ho, L. Pan, S. W. Novak, E. C. Dickey, J. M. Redwing and T. S. Mayer. Use of phosphineas an n-type dopant source for vapor-liquid-solid growth of silicon nanowires. Nano Letters, 2005, 5(11): 2139-2143.
[19] X. S. Fang, C. H. Ye, L. D. Zhang, Y. H. Wang and Y. C. Wu. Temperature-controlled catalytic growth of ZnS nanostructures by the evaporation of ZnS nanopowders. Advanced Functional Materials, 2005, 15(1): 63-68.
[20] Z. W. Pan, Z. R. Dai and Z. L. Wang. Nanobelts of semi-con- ducting oxides. Science, 2001, 291(5510): 1347-1949.
[21] X. Y. Kong, Y. Ding, R. S. Yang and Z. L. Wang. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science, 2004, 303(5662): 1348-1351.
[22] G. S. Wang, Y. Deng and L. Guo. Single-crystalline ZnO nano- wire bundles: Synthesis, mechanism and their application in di- electric composites. Chemistry: A European Journal, 2010, 16 (33): 10220-10225.
[23] L. Q. Mai, Y. H. Gu, C. H. Han, B. Hu, W. Chen, P. C. Zhang, L. Xu, W. L. Guo and Y. Dai. Orientated Langmuir-Blodgett as- sembly of VO2 nanowires. Nano Letters, 2009, 9(2): 826-830.
[24] M. H. Cao, C. W. Hu, Q. Y. Wu, C. X. Guo, Y. J. Qi and E. B. Wang. Controlled synthesis of LaPO4 and CePO4 nanorods/nano- wires. Nanotechnology, 2005, 16(2): 282-286.
[25] M. H. Cao, C. W. Hu and E. B. Wang. The first fluoride one- dimensional nanostructures: Microemulsion-mediated hydrother- mal synthesis of BaF2 whiskers. Journal of the American Che- mical Society, 2003, 125(37): 11196-11197.
[26] N. Du, Y. E. Xu, H. Zhang, C. X. Zhai and D. R. Yang. Selective synthesis of Fe2O3 and Fe3O4 nanowires via a single precursor: A general method for metal oxide nanowires. Nanoscale Research Letters, 2010, 5(8): 1295-1300.
[27] M. Nath, B. A. Parkinson. A simple sol-gel synthesis of super- conducting MgB2 nanowires. Advanced Materials, 2006, 18(14): 1865-1868.
[28] X. G. Wen, S. H. Yang. Cu2S/Au core/sheath nanowires prepared by a simple redox deposition method. Nano Letters, 2002, 2: 451-454.
[29] S. Xu, Z. L. Wang. One-dimensional ZnO nanostructures: Solu- tion growth and functional properties. Nano Research, 2011, 4 (11): 1013-1098.
[30] K. Q. Peng, M. L. Zhang, A. J. Lu, N. B. Wong, R. Q. Zhang and S. T. Lee. Ordered silicon nanowire arrays via nanophere lithography and metal-induced etching. Applied Physics Letters, 2007, 90: 1-3.
[31] Z. Huang, H. Fang and J. Zhu. Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Advanced Materials, 2007, 19(5): 744-748.
[32] M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee and N. B. Wong. Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. Jour- nal of Physical Chemistry B, 2008, 112(12): 4444-4450.
[33] K. Q. Peng, X. Wang, X. L. Wu and S. T. Lee. Platinum nano- particle decorated silicon nanowires for efficient solar energy conversion. Nano Letters, 2009, 9(11): 3704-3709.
[34] V. P. Menon, C. R. Martin. Fabrication and evaluation of nano- electrode ensembles. Analytical Chemistry, 1995, 67(13): 1920- 1928.
[35] D. J. Sellmyer, M. Zheng and R. Skomski. Magnetism of Fe, Co and Ni nanowires in self-assembled arrays. Journal of Physics: Condensed Matter, 2001, 13: 433-436.
[36] Y. Huang, X. Duan, Y. Cui, L. Lauhon, K. Kim and C. M. Lieber. Logic gates and computation from assembled nanowire build-ing blocks. Science, 2001, 294(55445): 1313-1317.
[37] J. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, R. J. Say- kally and P. Yang. Single gallium nitride nanowire lasers. Nature Materials, 2002, 1: 101-110.
[38] C. Z. Li, H. X. He, A. Bogozi, J. S. Bunch and N. J. Tao. Mole- cular detection based on conductance quantization of nanowires. Applied Physics Letters, 2000, 76(10): 1333-1335.
[39] E. C. Walter, F. Faview and R. M. Penner. Palladium mesowire arrays for fast hy-drogen sensors and hydrogen-actuated switches. Analytical Chemistry, 2002, 74(7): 1546-1553.
[40] Y. Cui, Q. Wei, H. Park and C. M. Lie-ber. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293(5533): 1289-1292.
[41] M. Law, H. Kind, B. Messer, F. Kim and D. Yang. Novel achiral biphenol-derived diastereomeric oxovanadium (IV) complexes for highly enantioselective oxidative coupling of 2-naphthols. Angewandte Chemie-International Edition, 2002, 114(23): 4714- 4717.
[42] C. Dekker. Carbon nanotubes as molecular quantum wires. Phy- sics Today, 1999, 5(1): 22-28.
[43] H. Kind, H. Yan, M. Law, B. Messer and P. Yang. Nanowire ultraviolet photodetectors and optical switches. Advanced Materials, 2002, 14(2): 158-160.
[44] J. Black, H. Lowckwood and S. Mayburg. Recombination radiation in GaAs. Journal of Applied Physics, 1963, 34(1): 178-180.
[45] M. G. Craford. LEDs challenge the incandescents. Circuits and Devices Magazine, 1992, 8(1): 25-29.
[46] H. Matsunami, M. Ikeda A. Suzaki and T. Tanaka. SiC blue LED’s by liquid-phase epitaxy. Transactions on Electron Devices, 1997, 24: 958-961.
[47] Z. Zhong, F. Qian, D. Wang and C. M. Lieber. Synthesis of p- type gallium nitride nanowires for electronic and photonic nano- devices. Nano Letters, 2003, 3(3): 343-346.
[48] F. A. Ponce, D. P. Bour. Nitride-based semiconductors for blue and green light-emitting devices. Nature, 1997, 386(6623): 351- 359.
[49] T. Kobayashi, S. Egawa, M. Sawada and T. Honda. GaN-based Schottky-type UV light-emitting diodes and their integra-tion for flat-panel displays. Physica Status Solidi C, 2007, 4(1): 61-64.
[50] S. K. Lee, T. H. Kim, S. Y. Lee, K. C. Choi and P. Yang. High- brightness gallium nitride nanowire UV-blue light emitting di-odes. Philosophical Magazine, 2007, 87(14-15): 2105-2115.
[51] H. L. Zhou, S. J. Chua, H. Pan, Y. W. Zhu, T. Osipowicz, W. Liu, K. Y. Zang, Y. P. Feng and C. H. Sow. Morphology controllable ZnO growth on facet-controlled epitaxial lateral overgrown GaN/sapphire templates. Journal of Physical Chemistry C, 2007, 111(17): 6405-6410.
[52] J. Bao, M. A. Zimmler and F. Capasso. Broadband ZnO single- nanowire light-emitting diode. Nano Letters, 2006, 6(8): 1719- 1722.
[53] M. C. Jeong, B. Y. Oh, M. H. Ham, S. W. Lee and J. Myoung, Min ZnO-nanowire-inserted GaN/ZnO heterojunction light-emit- ting diodes. Small, 2007, 3: 586-572.
[54] D. C. Kim, W. S. Han, B. H. Kong and H. K. Cho. Fabrication of the hybrid ZnO LED structure grown on p-type GaN by metal organic chemical vapor deposition. Physica B, 2007, 401: 386- 390.
[55] H. Gao, F. Yan, J. Li, Y. Zeng and J. Wang. Synthesis and char- acterization of ZnO nanorods and nanoflowers grown on GaN- based LED epiwafer using a solution deposition method. Journal of Physics D: Applied Physics, 2007, 40(12): 3654-3658.
[56] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koiinuma and M. Kawasali. Repeated temperature modula- tion epitaxy for p-type doping and light-emitting diode based on ZnO. Nature Materials, 2005, 4(1): 42-46.
[57] X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen and Z. L. Wang. Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Advanced Materials, 2009, 21(27): 2767-2770.
[58] B. O’Regan, M. Gratzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal titanium dioxide films. Nature, 1991, 353(6346): 737-740.
[59] W. U. Uynh, J. J. Dittmer and A. P. Alivi-satos. Hybrid nano- rod-polymer solar cells. Science, 2002, 295(5564): 2425-2427.
[60] M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. D. Yang. Nanowire dye-sensitized solar cells. Nature Materials, 2005, 4(6): 455-459.
[61] X. D. Wang, J. Zhou, J. H. Song, J. Liu, N. S. Xu and Z. L. Wang. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Letters, 2006, 6(12): 2768- 2772.