心肌ECM研究进展:心肌ECM的获取、评价、和改造
Progress on Cardiac Extracellular Matrix (ECM): Acquirement, Evaluation and Modification of Cardiac ECM
DOI: 10.12677/jps.2013.11001, PDF, HTML, XML,  被引量 下载: 4,246  浏览: 18,933  国家自然科学基金支持
作者: 姜煜东, 李文思, 尹盟盟, 余翀, 胡新武, 席姣娅*:华中科技大学同济医学院基础医学院生理学系,中德干细胞中心,药物靶点研究与药效学评价湖北省重点实验室,武汉
关键词: 脱细胞化组织工程心肌细胞外基质Decellularization; Tissue Engineering; Myocardium; Extracellular Matrix
摘要: 急、慢性心肌梗死导致功能性心肌细胞坏死,心泵功能受损,可利用组织工程技术将心肌细胞与细胞外支架制备成心肌补丁进行心功能修复。心肌细胞外基质(extracellular matrix, ECM)被认为是构建细胞外支架的理想材料。使用ECM构建重组心肌是心肌组织工程研究的重要方向。脱细胞处理制得的ECM具备较低的免疫原性、强大的自我更新能力以及良好的生物相容性。目前心肌ECM的制备方法多种多样,相对彻底的脱细胞化处理是消除免疫原性的必要步骤,但同时会造成ECM超微结构的破坏,不利于ECM重细胞化和心肌重建。研究者尝试通过各种手段检测并评价脱细胞方法的效果,不断改良脱细胞化技术,并通过修饰和改造心肌ECM,提升其生物相容性和机械性能。本综述围绕心肌ECM的获取、评价、和改造,对目前组织工程的心肌ECM相关研究新进展进行总结。 Both acute and chronic myocardial infraction can lead to necrosis of functional myocardial cells as well as impaired cardiac-pump function. The cardiac patches generated from cardiomyocytes and extracellular matrix scaffold by tissue engineering can be used to repair the impaired function. Cardiac extracellular matrix (ECM) has been widely considered as an ideal source of biological scaffolds, and the application of ECM in myocardial reconstruction is one of the main research fields in myocardial tissue engineering. ECM, generated from the process of decellularization, has relatively low immunogenecity, strong self-renewal ability and good biocompatibility. Currently, the methodology of cardiac ECM is greatly diversified. Although thorough decellularization is the essential process of eliminating immu-nogenecity, it will damage the ultrastructure of ECM, having a negative effect on recellularization and myocardial re-construction afterwards. Researchers are trying various methods to detect and evaluate the effect of decellularization, and continuously optimize the protocol of decellularization. Moreover, they promote the biocompatibility and me-chanical properties of cardiac ECM by modifying and transforming it. Our review focuses on the acquisition, evaluation and modification of cardiac ECM, and summarizes the recent research progress on it.
文章引用:姜煜东, 李文思, 尹盟盟, 余翀, 胡新武, 席姣娅. 心肌ECM研究进展:心肌ECM的获取、评价、和改造[J]. 生理学研究, 2013, 1(1): 1-6. http://dx.doi.org/10.12677/jps.2013.11001

参考文献

[1] R. Passier, L. W. van Laake and C. L. Mummery. Stem-cell-bas- ed therapy and lessons from the heart. Nature, 2008, 453(7193): 322-329.
[2] B. C. Karikkineth, W. H. Zimmermann. Myocardial tissue engi- neering and heart muscle repair. Current Pharmaceutical Bio- technology, 2013, 14(1): 4-11.
[3] M. He, A. Callanan. Comparison of methods for whole-organ decellularization in tissue engineering of bioartificial organs. Tissue Engineering Part B Reviews, 2012, 19(3): 194-208.
[4] H. C. Ott, T. S. Matthiesen, S. K. Goh, et al. Perfusion-decellu- larized matrix: Using nature’s platform to engineer a bioartificial heart. Nature Medicine, 2008, 14(2): 213-221.
[5] A. F. Godier-Furnemont, T. P. Martens, M. S. Koeckert, et al. Composite scaffold provides a cell delivery platform for cardio- vascular repair. Proceedings of the National Academy of Sci- ences of USA, 2011, 108(19): 7974-7979.
[6] H. W. Cheng, Y. K. Tsui, KMC Cheung, et al. Decellularization of chondrocyte-encapsulated collagen microspheres: A three- dimensional model to study the effects of acellular matrix on stem cell fate. Tissue Engineering Part C: Methods, 2009, 15(4): 697-706.
[7] P. Somers, F. de Somer, M. Cornelissen, et al. Decellularization of heart valve matrices: Search for the ideal balance. Artificial Cells Blood Substitutes and Biotechnology, 2012, 40(1-2): 151- 162.
[8] T. Jiao, R. J. Clifton, G. L. Converse, et al. Measurements of the effects of decellularization on viscoelastic properties of tissues in ovine, baboon, and human heart valves. Tissue Engineering Part A, 2012, 18(3-4): 423-431.
[9] L. Gui, S. A. Chan, C. K. Breuer, et al. Novel utilization of se- rum in tissue decellularization. Tissue Engineering Part C Methods, 2010, 16(2): 173-184.
[10] J. M. Wainwright, C. A. Czajka, U. B. Patel, et al. Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Engineering Part C Methods, 2010, 16(3): 525-532.
[11] A. Weymann, S. Loganathan, H. Takahashi, et al. Development and evaluation of a perfusion decellularization porcine heart mo- del-generation of 3-dimensional myocardial neoscaffolds. Circulation Journal, 2011, 75(4): 852-860.
[12] U. Sarig, G. C. Au-Yeung, Y. Wang, et al. Thick acellular heart extracellular matrix with inherent vasculature: A potential platform for myocardial tissue regeneration. Tissue Engineering Part A, 2012, 18(19-20): 2125-2137.
[13] C. V. Montoya, P. S. McFetridge. Preparation of ex vivo-based biomaterials using convective flow decellularization. Tissue En- gineering Part C Methods, 2009, 15(2): 191-200.
[14] E. Rieder, M. T. Kasimir, G. Silberhumer, et al. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellulariza- tion with human vascular cells. The Journal of Thoracic and Car- diovascular Surgery, 2004, 127(2): 399-405.
[15] M. T. Kasimir, G. Weigel, J. Sharma, et al. The decellularized porcine heart valve matrix in tissue engineering: Platelet adhesion and activation. Thromb Haemost, 2005, 94(3): 562-567.
[16] P. Akhyari, H. Aubin, P. Gwanmesia, et al. The quest for an optimized protocol for whole-heart decellularization: A comparison of three popular and a novel decellularization technique and their diverse effects on crucial extracellular matrix qualities. Tissue Engineering Part C Methods, 2011, 17(9): 915-926.
[17] E. Rieder, M.-T. Kasimir, G. Silberhumer, et al. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. The Journal of Thoracic and Cardiovascular Surgery, 2004, 127(2): 399-405.
[18] K. X. Wang, J. F. Zhang, Q. P. Zhan, et al. [Effect of trypsin and triton-X 100 for decellularization of porcine aortic heart valves. Di Yi Jun Yi Da Xue Xue Bao, 2005, 25(1): 22-25.
[19] M. T. Kasimir, E. Rieder, G. Seebacher, et al. Comparison of dif- ferent decellularization procedures of porcine heart valves. The International Journal of Artificial Organs, 2003, 26(5): 421-427.
[20] J. Y. Zhou, O. Fritze, M. Schleicher, et al. Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and throm- bogenicity. Biomaterials, 2010, 31(9): 2549-2554.
[21] S. Cebotari, I. Tudorache, T. Jaekel, et al. Detergent decellulari zation of heart valves for tissue engineering: Toxicological effects of residual detergents on human endothelial cells. Artificial Organs, 2010, 34(3): 206-209.
[22] M. Phillips, E. Maor and B. Rubinsky. Nonthermal irreversible electroporation for tissue decellularization. Journal of Biome- chanical Engineering, 2010, 132(9): Article ID: 091003.
[23] T. Ota, S. Taketani, S. Iwai, et al. Novel method of decellulariza- tion of porcine valves using polyethylene glycol and gamma ir- radiation. The Annals of Thoracic Surgery, 2007, 83(4): 1501- 1507.
[24] B. Mendoza-Novelo, E. E. Avila, J. V. Cauich-Rodriguez, et al. Decellularization of pericardial tissue and its impact on tensile viscoelasticity and glycosaminoglycan content. Acta Biomater, 2011, 7(3): 1241-1248.
[25] P. Akhyari, H. Aubin, P. Gwanmesia, et al. The quest for an optimized protocol for whole-heart decellularization: A comparison of three popular and a novel decellularization technique and their diverse effects on crucial extracellular matrix qualities. Tissue Engineering Part C: Methods, 2011, 17(9): 915-926.
[26] C. Witzenburg, R. Raghupathy, S. M. Kren, et al. Mechanical changes in the rat right ventricle with decellularization. Journal of Biomechanics, 2012, 45(5): 842-849.
[27] M. T. Kasimir, E. Rieder, G. Seebacher, et al. Decellularization does not eliminate thrombogenicity and inflammatory stimula- tion in tissue-engineered porcine heart valves. Journal of Heart Valve Disease, 2006, 15(2): 278-86; Discussion 286.
[28] H. G. Lim, S. H. Kim, S. Y. Choi, et al. Anticalcification effects of decellularization, solvent, and detoxification treatment for genipin and glutaraldehyde fixation of bovine pericardium. Euro- pean Journal of Cardio-Thoracic Surgery, 2012, 41(2): 383-390.
[29] C. Collatusso, J. G. Roderjan, E. D. Vieira, et al. Decellulariza- tion as an anticalcification method in stentless bovine pericar- dium valve prosthesis: A study in sheep. Revista Brasileira de Cirurgia Cardiovascular, 2011, 26(3): 419-426.
[30] T. J. Keane, R. Londono, N. J. Turner, et al. Consequences of ineffective decellularization of biologic scaffolds on the host re- sponse. Biomaterials, 2012, 33(6): 1771-1781.
[31] B. Wang, A. Borazjani, M. Tahai, et al. Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells. Journal of Biomedical Materials Re- search Part A, 2010, 94(4): 1100-1110.
[32] 周建良, 邹明晖, 胡行健等. 血管内皮细胞生长因子修饰的聚乙二醇化去细胞瓣构建心脏瓣膜复合支架[J]. 中华临床医师杂志(电子版), 2011, 5(10): 2890-2895.
[33] 顾春虎, 王云雅, 魏旭峰等. 精氨酸–甘氨酸–天冬氨酸肽联合环氧氯丙烷改良去细胞猪瓣研究[J]. 中华实验外科杂志, 2009, 9: 1188-1189.
[34] 叶晓峰, 赵强, 孙晓宁. 生物素化去细胞猪主动脉瓣构建组织工程心脏瓣膜研究[J]. 中华实验外科杂志, 2008, 25(1): 80- 82.
[35] 李秋泽, 徐志云, 黄盛东等. 人细胞外基质包被猪去细胞瓣膜支架构建的组织工程心脏瓣膜[J]. 中国组织工程研究与临床康复, 2009, 13(42): 8269-8272.
[36] 张振亮, 周建业, 胡盛寿等. 光氧化处理脱细胞牛心包构建组织工程心肌补片的实验研究[J]. 中华胸心血管外科杂志, 2011, 27(8): 485-488.