水热法合成二硫化钼纳米花
Hydrothermal Synthesis of Flower-Like MoS2 Nanoparticle
DOI: 10.12677/NAT.2013.32003, PDF, HTML,  被引量 下载: 7,024  浏览: 24,834  国家自然科学基金支持
作者: 蔡嫦芳, 吴锋民*, 方允樟, 杜元宝, 韩聪, 孟庆哲:浙江师范大学LED 芯片研发中心,金华
关键词: MoS2纳米花水热法晶相形貌 Nanometer Flower MoS2; Hydrothermal; Crystal Phase; Morphology
摘要:

MoS2纳米花以MoO3和Na2S为前驱体,在230℃下采用水热法反应6 h合成。MoO3为反应提供钼源,Na2S为反应提供硫源,同时还作为反应中的还原剂。产物通过XRD和SEM、Raman光谱表征其特性。MoS2纳米花是由几十到上百个花瓣组织构成的,平均花径约为200~300 nm,边缘厚度约为5~10 nm的薄片花瓣从一个中心向各个方向放射性生长。对比反应温度和盐酸的浓度的对合成MoS2纳米花的影响,结果表明其最佳实验条件为:反应温度为230℃,盐酸浓度为0.4 mol/L,反应时间为6 h。实验结果表明,采用此方法合成MoS2纳米花晶相纯,没有杂质且反应时间短,实验条件要求低。同时还探究了实验可能的反应原理。

Abstract: Flower-like MoS2 nanoparticles have been synthesized through a hydrothermal method which using MoO3 and Na2S as precursors reacting in 230˚C for 6 h. MoO3 works as the source of molybdenum for the reaction, and Na2S provides sulfur, it also works as the reducing agent of this reaction. The reaction product is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman. The flower is composed of tens to hundreds of sets whose average diameter is 200 - 300 nm, the ultra-thin nanosheets of 5 - 10 nm in thickness is radioactive growth in all directions from a center. The influence of the reaction temperature and the concentration of hydrochloric acid on the formation of the flowers was evaluated. The optimal experimental conditions were determined as follows: reaction temperature of 230˚C, 0.4 mol/l HCl and reaction time of 6 h. The result shows that using this method to synthesize flower-like MoS2 nanostructure has many advantages: pure crystal phase, no impurities, less time for reacting, and low requirements of experimental conditions. The possible reaction route is discussed in this paper.

文章引用:蔡嫦芳, 吴锋民, 方允樟, 杜元宝, 韩聪, 孟庆哲. 水热法合成二硫化钼纳米花[J]. 纳米技术, 2013, 3(2): 19-23. http://dx.doi.org/10.12677/NAT.2013.32003

参考文献

[1] M. A. Albiter, R. Huirache-Acuña, F. Paraguay-Delgado, et al. Synthesis of MoS2 nanorods and their catalytic test in the HDS of dibenzothiophene. Nanotechnology, 2006, 17(14): 3473-3481.
[2] M. Chhowalla, G. A. J. Amaratunge. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature, 2000, 407: 164-167.
[3] A. S. Golub, Y. V. Zubavichua and Y. L. Slovokhotov. Layer compounds assembled from molybdenum disulfide single-layer and alkylammonium cations. Solid State Ionices, 2000, 128(1): 151-160.
[4] D. S. Takur, B. Delmon. The role of group VIII metal promoter in MoS2 and WS2 hydrotreating catalysts. Journal of Catalysis, 1985, 91(2): 308-317.
[5] J. Chen, N. Kuriyana, H. T. Yuan, et al. Electrochemical hydro- gen storage in MoS2 nanotubes. Journal of the American Che- mical Society, 2001, 123(47): 11813-11814.
[6] R. Tenne. Inorganic nanotubes and fullerene-like materials. Che- mistry—A European Journal, 2002, 8(23): 5296-5304.
[7] 胡坤宏, 沃恒洲. 纳米二硫化铝的制备与发展趋势[J]. 现代化工, 2003, 23(8): 14-21.
[8] X. L. Li. One-dimensional metal oxides and sulfides nanomate- rials: Synthesis, characterization and their properties. Beijing: Tsinghua University, 2005.
[9] Q. Li, M. Li, Z.-Q. Chen, et al. Simple solution route to uniform MoS2 particles with randomly stacked layers. Materials Re- search Bulletin, 2004, 39(7-8): 981-986.
[10] Q. Li, J. T. Newberg, E. C. Walter, et al. Polycrystalline molyb- denum disulfide (2H-MoS2) nano- and microribbons by electro- chemical/chemical synthesis. Nano Letters, 2004, 4(2): 277-281.
[11] J. Etzkorn, H. A. Therese and F. Rocker. Metal-organic chemical vapor depostion synthesis of hollow inorganic-fullerene-type MoS2 and MoSe2 nanoparticles. Advanced Materials, 2005, 17(19): 2372-2375.
[12] C. N. R. Rao, K. P. Pisharody. Hydrothermal synthesis of MoS2 and its lubrieating properties. Journal of Solid State Chemistry, 1975, 10: 207-221.
[13] P. Afanasiev, I. Bezverkhy. Genesis of vesicle-like and tubular morphologies in inorganic precipitates: Amorphous Mo oxysul- fides. The Journal of Physical Chemistry B, 2003, 107(12): 2678-2683.
[14] M. Remskar, A. Mrzel, Z. Skraba, et al. Self-assembly of sub nanometerdia meter single-wall MoS2 nano-tubes. Science, 2001, 292(5516): 479-481.
[15] W. K. Hsu, B. H. Chang, Y. Q. Zhu, et al. Alternative route to molybdenum disulfide nanotubes. Journal of the American Che- mical Society, 2000, 122(41): 10155-10158.
[16] M. Nath, A. Govindaraj and C. N. R. Rao. Simple synthesis of MoS2 and WS2 Nanotubes. Advanced Materials, 2001, 13(4): 283-286.
[17] Y. Y. Peng, Z. Y. Meng, C. Zhong, et al. Tube- and ball-like amorphous MoS2 prepared by a solvothermal method. Materials Chemistry and Physics, 2002, 73(2-3): 327-329.
[18] H. T. Lin, X. Y. Chen, H. L. Li, et al. Hydrothermal synthesis and characterization of MoS2 nanorods. Materials Letters, 2010, 64(44): 1748-1750.
[19] H. Luo, C. Xu, D. B. Zou, et al. Hydrothermal synthesis of hol- low MoS2 microspheres in ionic liquids/water binary emulsions. Materials Letters, 2008, 62(20): 3558-3560.
[20] L. Ye, W. Guo, Y. Yang, et al. Directing the architecture of vari- ous MoS2 hierarchical hollow cages through the controllable synthesis of surfactant/molybdate composite precursors. Chem- istry of Materials, 2007, 19(25): 6331-6337.
[21] C. Reza-San, P. Santiago, J. A. Ascencio, et al. Graphite-incor- porated MoS2 nanotubes: A new coaxial binary system. The Journal of Physical Chemistry B, 2005, 109(37): 17488-17495.
[22] R. Tene. Fullerene-like materials and nanotubes from inorganic compounds with a layered (2-D) structure. Colloids and Surfaces A, 2002, 208(1-3): 83-92.
[23] 施尔畏, 夏长泰, 王步国等. 水热法的应用与发展[J]. 无机材料学报, 1996, 11(2): 193.
[24] K. T. Holman, A. M. Pivovar, J. A. Swift, et al. Metric engineer- ing of soft molecular host frameworks. Accounts of Chemical Research, 2001, 34(2): 107-118.
[25] Y. Feldman, E. Wasserman, D. J. Srolovitz, et al. High-rate, gas- phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science, 1995, 267(5195): 222-225.
[26] H. H. Wu, R. Yang, B. M. Song, et al. Biocompatible inorganic fullerene-like molybdenum disulfide nanoparticles produced by pulsed laser ablation in water. ACS Nano, 2011, 5(2): 1276- 1281.
[27] L. Kumari, Y.-R. Ma, C.-C. Tsai, et al. X-ray diffraction and raman scattering studies on large-area array and nanobranched structure of 1D MoO2 nanorods. Nanotechnology, 2007, 18(11): 115717.