纳米技术  >> Vol. 3 No. 2 (May 2013)

Cytotoxicity of Gold, Silver and Copper Nanoparticles and Their Applications

DOI: 10.12677/NAT.2013.32004, PDF, HTML,  被引量 下载: 3,743  浏览: 16,544 

作者: 范玉玲, 马丽华*:哈尔滨商业大学生命科学与环境科学研究发展中心,哈尔滨;范兵羽:哈药集团三精制药诺捷有限责任公司,绥化;冷爽:国家教育部抗肿瘤天然药物工程研究中心,哈尔滨

关键词: 金属纳米粒子细胞毒性Gold; Silver; Copper; Metal Nanoparticles; Cell Cytotoxicity



Abstract: Objective: In order to summarize the advance of study on cytotoxicity and application of the metal nano- particles, the typical representative: gold, silver, copper. Method: The national and international literatures looked up in recent years were analyzed. Results and Conclusions: Metal nanoparticles have proved to be a potential in anti-cancer. But they are still needed to be further understood and optimized with their powerful characteristics, so that they could be used more effectively in treatment strategies in the fight against cancer with a wide range of clinical applications.

文章引用: 范玉玲, 马丽华, 范兵羽, 冷爽. 金银铜纳米粒子的细胞毒性及其应用研究进展[J]. 纳米技术, 2013, 3(2): 24-34. http://dx.doi.org/10.12677/NAT.2013.32004


[1] M. Brust, M. Walker, D. Bethell, et al. Synthesis of thiol-deri- vatised gold nanoparticles in a two-phase liquid-liquid system. Journal of the Chemical Society, Chemical Communications, 1994, 7: 801-802.
[2] S. Chen, R. W. Murray. Electrochemical quantized capacitance charging of surface ensembles of gold nanoparticles. The Jour- nal of Physical Chemistry B, 1999, 103: 9996-10000.
[3] E. Connor, J. Mwamuka, A. Gole, C. Murphy and M. Wyatt. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 2005, 1: 325-327.
[4] R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde and M. Sastry. Bio-compatibility of gold nanoparticles and their en- docytotic fate inside the cellular compartment: A microscopic overview. Langmuir, 2005, 21: 10644-10654.
[5] Y. Pan, S. Neuss, A. Leifert, M. FischIer, F. Wen, U. Simon, et a1. Size-dependent cytotoxicity of goid nanoparticles. Small, 2007, 3: 1941-1949.
[6] Y. S. Chen, Y. C. Hung, I. Liau and G. S. Huang. Assessment of the in vivo toxicity of gold nanoparticles.Nanoscale Research Letters, 2009, 4: 858-864.
[7] H. Johnston, G. Hutchison, S. Christensen Peters and S. Hankin. Stone A review of the fn vivo and fn vitro toxicity of silver and gold particulates: Particle atributes and biological mechanisms responsible for the observed toxicity. Critical Reviews in Toxi- cology, 2010, 40: 328-346.
[8] B. Chithrani, A. Ghazani and W. Chan. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 2006, 6: 662-668.
[9] Y. Pan, A. Leifert, D. Ruau, S. Neuss, J. Bornemann, G. Schmid, et a1. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small, 2009, 5: 2067-2076.
[10] J. Li, L. Zou, D. Hartono, C. Ong, B. Bay and L. Yung. Gold nanoparticles induce oxidative damage in lung fibroblasts in vi- tro. Advanced Materials, 2008, 20: 138-142.
[11] G. Sonavane, K. Tomoda and K. Makino. Biodistribution of coll- oidal gold nanoparticles after intravenous administration effect of particle size. Colloids and Surfaces B: Biointerfaces, 2008, 66: 274-280.
[12] W. Cho, S. Kim, B. Han, W. Son and J. Jeong. Comparion of gene expression proflles in mice liver following intravenous in- jection of 4 and 100nm-sized PEG-coated gold nanopartlcles. Toxicology Letters, 2009, 191: 96-102.
[13] S. Kumar, N. Harrison, R. Richards-Kortum and K. Sokolov. Plasmonic nanosensors for imaing intraceIluolar biomarkers in live ceils. Nano Letters, 2007, 7: 1338-1343.
[14] P. Zrazhevskiy, X. Gao. Multifunctional quantum dots for per- sonalized medicine. Nano Today, 2009, 4: 414-428.
[15] R. SperIing, P. RiVera Gil, F. Zhang, M. Zanella and W. Parak. Biological applications of gold nanoparticies. Chemical Society Reviews, 2008, 37: 1896-1908.
[16] J. Roth. The silver anniversary of gold: 25 years of the colloidal gold marker system for immunocytochemistry and histochemis- try. Histochemistry and Cell Biology, 1996, 106: 1-8.
[17] S. Lee, H. Chon, M. Lee, J. Choo, S. Lee, et al. Surface en- hanced raman scattering imaging of HER2 cancer markers over- expressed in single MCF7 cells using antibody conjugated hollow gold nanospheres. Biosensors and Bioelectronics, 2009, 24: 2260- 2263.
[18] J. Kneipp, H. Kneipp, B. Wittig and K. Kneipp. Novel optical nanosensors for probing and imaging live cells. Nanomedicine, 2010, 6: 214-226.
[19] S. H. Lee, K. H. Bae, S. H. Kim, K. R. Lee and T. G. Park. Amine-functionalized gold nanoparticles as non-cytotoxic and efficient intracellular siRNA delivery carriers. International Jour- nal of Pharmaceutics, 2008, 364: 94-101.
[20] C. Kim, P. Ghosh and V. Rotello. Multimodal drug delivery using gold nanoparticles. Nanoscale, 2009, 1: 61-67.
[21] B. Duncan, C. Kim and V. M. Rotello. Gold nanoparticle plat- forms as drug and biomacromo-lecule delivery systems. Journal of Controlled Release, 2010, 148: 122-127.
[22] W. H. de Jong, P. J. A. Borm. Drug delivery and nanoparticles: applications and hazards. International Journal of Nanomedicine, 2008, 3: 133-149.
[23] J. Sakamoto, A. Annapragada, P. Decuzzi and M. Ferrari. Anti- biological barrier nanovector technology for cancer applica- tions. Expert Opinion on Drug Delivery, 2007, 4: 359-369.
[24] G. Zhang, Z. Yang, W. Lu, R. Zhang, Q. Huang, M. Tian, et a1. Influence of anchoring ligands and particle size on the coloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials, 2009, 30: 1928-1936.
[25] X. H. Huang, P. K. Jain, I. H. El-Sayed and M. A. El-Sayed. Plasmonic photothermal therapy (PPTT) using gold nanoparti- cles. Lasers in Medical Science, 2008, 23: 217-228.
[26] C. Liu, B. Q. Li and C. C. Mi. Fast transient thermal analysis of gold nanoparticles in tissue-like medium. IEEE Transactions on Nanobioscience, 2009, 8: 271-280.
[27] S. Link, M. A. El-Sayed. Shape and size dependence of radia- tive, nonradiative and photothermal properties of gold nano- crystals. International Reviews in Physical Chemistry, 2000, 19: 409-453.
[28] J. Hainfeld, D. Slatkin and H. Smilowitz. The use of gold nano- particles to enhance radiotherapy in mice. Physics in Medicine and Biology, 2004, 49: N309-N315.
[29] K. T. Buterworth, J. A. Coulter, S. Jaln, J. Forker, S. J. McMa- hon, G. Schettino, et al. Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: Potential application for cancer therapy. Nanotechnology, 2010, 21: 295101.
[30] R. Mukhedee Bhattacharya, L. Wang, S. Basu, J. A. Nagy, et a1. Antiangiogenic properties of gold nanoparticles. Clinical Cancer Research, 2005, 11: 3530-3534.
[31] R. Bhattacharya, P. Mukhedee. Biological properties of naked metal nanoparticles. Advanced Drug Delivery Reviews, 2008, 60: 1289-1306.
[32] M. A. Hollinger. Toxicological aspects of topical silver pharma- ceuticals. Critical Reviews in Toxicology, 1996, 26: 255-260.
[33] M. E. Innes, N. Umraw and J. S. Fish. The use of silver coated dressings on donor site wounds: A prospective, controlled matched pair study. Burns, 2001, 27: 621-627.
[34] K. M. V. Poon, A. Burd. In vitro cytotoxity of silver: Implication for clinical wound care. Burns, 2004, 30: 140-147.
[35] K. Soto, K. M. Garza and L. E. Murr. Cytotoxic effects of aggregated nanomaterials. Acta Biomaterialia, 2007, 3: 351-358.
[36] K. F. Soto, A. Carrasco, T. G. Powell, et al. Comparative in vitro cytotoxixity assessment of some manufactured nanoparticulate materials characterized by transmission electron microscopy. Journal of Nanoparticle Research, 2005, 19: 975-983.
[37] S. M. Hussain, K. L. Hess, J. M. Gearhart, et al. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol in Vitro, 2005, 19: 975-983.
[38] K. Kawata, M. Osawa and S. Okabe. In vitro toxicity of silver nanoparticles at nonvytotoxic does to heoG2 human hepatoma cells. Environmental Science & Technology, 2009, 43: 6046- 6051.
[39] J. W. Allen, J. C. Liang, A. V. Carrano, et al. Review of literature on chemical-induced aneuploidy in mammalian male germ cells. Mutation Research, 1986, 167: 123-137.
[40] J. L. Tilly. Molecular and genetic basis of normal and toxicant- induced apoptosis in female germ cells. Toxicology Letters, 1998, 103: 497-501.
[41] P. J. Borm, W. Kreyling. Toxicological hazards of inhaled nano- particles-potential implications for drug delivery. Journal of Na- noscience and Nanotechnology, 2004, 4: 521-531.
[42] Y. Chen, Z. Xue, D. Zheng, et al. Sodium chloride modified silica nanoparticles as a non-viral vector with a high efficiency of DNA transfer into cells. Current Gene Therapy, 2003, 3: 273- 279.
[43] E. Vlachou, E. Chipp, E. Shale, et al. The safety of nanocrystal- line silver dressings on burns: a study of systemic silver absorp- tion. Burns, 2007, 33: 979-985.
[44] S. H. Shin, K. YeM. The effects of nano-silver on the prolifera- tion and cytokine exipression by peripheral blood mononuclear cells. International Immunopharmacology, 2007, 1813-1818.
[45] H. J. Yen, S. H. Hsu and C. L. Tsai. Cytotoxicity and immuno- logical response of gold and silver nanoparticles of different sizes. Small, 2009, 5: 1553-1561.
[46] S. Nie, S. R. Emoty. Probing single molecules and single nano- particles by surface-enhanced Raman scattering. Science, 1997, 275: 1102-1106.
[47] D. J. Anderson, M. Moskovits. A SERS-active system based on silver nanoparticles tethered to a deposited silver film. The Jour- nal of Physical Chemistry B, 2006, 110: 13722-13727.
[48] X. Li, X. Zhang, W. Xu, et al. Mercaptoacetic acid-capped silver nanoparticles colloid: Formation, morphology, and SERS acti- vity. Langmuir, 2003, 19: 4285-4290.
[49] D. Graham, K. Faulds and E. W. Smith. Biosensing using silver nanoparticles and surface enhanced resonance Raman scattering. Chemical Communications, 2006, 42: 4363-4371.
[50] J. Hu, R. S. Sheng, Z. S. Xu, et al. Sutface-enhanced raman- sepctroscopy of lysozyme. Spectrochimica Acta, 1995, 51: 1087- 1096.
[51] P. Miskovsky, D. Jancura, S. S. Cortes, et al. Antiretrovirally active drug hypercin binds the IIA subdomain of human serum albumin: Resonance Raman and surface-enhanced Taman spec- troscopy study. Journal of the American Chemical Society, 1998, 120: 6374-6379.
[52] P. Miskovsky, J. Hritz, S. S. Cortes, et al. Interaction of hypercin with serum albumins: Surface-enhanced Raman spectroscopy, resonance Taman spectroscopy and molecular modeling study. Photochemistry and Photobiology, 2001, 74: 172-183.
[53] X. Dou, Y. M. Jung, Z. Q. Cao, et al. Surface-enhanced Raman scattering of biologial moleculs on metal colloid II: Effects of aggregation of gold colloid and comparison of effects of pH of glycine solutions between gold and silver colloids. Journal of Applied Spectroscopy, 1999, 53: 1440-1447.
[54] T. Vo-Dinh, D. L. Stokes, G. D. Griffin, et al. Surface-enhanced Raman scattering (SETS) method and instrumentation for geno- mics and biomedical analysis. Journal of Raman Spectroscopy, 1999, 30: 785-793.
[55] Y. M. C. Cao, R. C. Jin and C. A. Mirkin. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science, 2002, 297: 1592-1598.
[56] V. J. Pugh, H. Szmacinski, W. E. Moore, et al. Submictometer spatial resolution of metal-enhanced fluorescence. Applied Spec- troscopy, 2003, 57: 1592-1598.
[57] G. Liu, X. Li, B. Qin, et al. Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribology Letters, 2004, 17: 961-966.
[58] K. Guo, Q. Pan, L. Wang, et al. Nano-scale cop-per-coated gra- phite as anode material for lithium-ion batteries. Journal of Applied Spectroscopy, 20002, 32: 679-685.
[59] N. Cioffi, N. Ditaranto, L. Torsi, et al. Analytical characteriza- tion of bioactive fluoropolymer ultra-thin coatings modified by copper nanoparticles. Analytical and Bioanalytical Chemistry, 2005, 381: 607-616.
[60] B. Jese, R. L. Mary. Maintaining copper homeostasis: regulation of copper-trafficking proteins in response to copper deficiency or overload. The Journal of Nutritional Biochemistry, 2004, 15: 316-322.
[61] P. Z. Bjorn, H. D. Hermann, L. Max, et al. Epidemiological in- vesttigation on chronic copper toxicity to children exposed via the public drinking water supply. Science of the Total Environ- ment, 2003, 302: 127-144.
[62] C. M. Galhardi, Y. S. Diniz, L. A. Faine, et al. Toxicity of copper intake: Lipid profile, oxidative stress and susceptibility to renal dysfunction. Food and Chemical Toxicology, 2004, 42: 2053- 2060.
[63] 雷荣辉. 纳米铜肝肾毒性及其机制研究. 北京: 军事医学科学院毒物药物研究所博士论文, 2008.
[64] S. Lynch, B. Frei. Reduction of copper, but not iron, by human low density lipoprotein (LDL). ASBMB, 1995, 270(10): 5158- 5163.
[65] J. Teeguarden, P. Hinderliter, G. Orr. Particokinetics in vitro: Do- simetry considerations for in vitro nanoparticle toxicity assess- ments. Toxicological Sciences, 2007, 95(2): 300-312.
[66] N. Zamzami, P. Marchetti and M. Castedo. Inhibitors of per- meability trasition interfere with the disruption of the mitochon- drial trasmembrane potential during apoptosis. FEBS Letters, 1996, 384(1): 53-57.
[67] S. Woo, I. Park and M. Park. Arsenic trioxide induces apoptosis through a reactive oxygen species dependent parhway and loss of mitochondrial membrane potential in Hela cells. International Journal of Oncology, 2002, 21(1): 57-63.
[68] K. Midander, P. Cronholm, H. L. Karlsson, et al. Surface char- acteristics, copper release, and toxicity of nano- and micrometer- sized copper and copper (II) oxide particles: A cross-disciplinary study. Small, 2009, 5(3): 389-399.
[69] A. Bonelli, J. Ponti, M. Farina, et al. Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral leukocytes in vitro. Mutagenesis, 2008, 23(5): 377-382.
[70] L. K. Limbach, Y. Li, R. N. Grass, et al. Oxide nanoparticle up- take in human lung fibroblaste: Effects of particle size, agglo- meration, and diffusion at low cocetrations. Environmental Sci- ence & Technology, 2005, 39: 9370-9376.
[71] Z. Chen, H. Meng, G. Xing, et al. Acute toxicological effects of copper nanoparticles in vivo. Toxicology Letters, 2006, 163: 109- 120.