光电子  >> Vol. 3 No. 2 (June 2013)

图像超分辨重建技术及其应用
The Technique and Application of Image Super-Resolution Reconstruction

DOI: 10.12677/OE.2013.32006, PDF, HTML, XML, 下载: 3,804  浏览: 15,322 

作者: 于璐璐, 邹华:河海大学理学院

关键词: 图像超分辨图像超分辨应用退化模型学习模型最大后验概率估计(MAP)Image Super-Resolution; Application of Image Super-Resolution; Degradation Model; Learning Model; Maximum A Posteriori (MAP)

摘要: 本文介绍图像超分辨的重建技术及其应用,图像超分辨技术的过程即获得比单幅图像更多的额外信息,然后通过特定的算法,把这些额外的信息融入到原来的图像当中,获得一幅高质量、高清晰度的图像。图像超分辨率重建技术可以分为基于重建的超分辨率重建技术和基于学习的超分辨率重建技术。基于重建的超分辨重建技术主要是依据退化模型,通过不同的算法来估计高分辨率图像。而基于学习的超分辨率重建技术则是从训练样本中获得先验信息,对原始低分辨率图像进行补充。本文详细介绍了基于重建和基于学习的超分辨重建技术的一些主要算法。随着人们对数字图像的分辨率要求越来越高,图像超分辨技术应用逐渐广泛,涉及军事、医学、银行、勘探等很多领域。
Abstract: Image super-resolution reconstruction technique and its application are introduced in this paper. Image super resolution technology process is to obtain more additional information than single image, and then with specific algorithm, the additional information is put into the original image to obtain an image with high quality and high definition. Super-resolution reconstruction includes two kinds of technology: reconstruction-based technology and learning-based technology. The reconstruction-based technology is estimating a high-resolution image from inputting images according to specific degradation model. Learning-based technology is supplying inputting images with prior knowledge from training examples. This paper introduces some major algorithms of reconstruction-based technology and learning-based technology in detail. As people are getting higher and higher requirement for the resolution of the digital image, image super resolution technology is applied more widely in many fields, such as military, medicine, bank, exploration, etc.

文章引用: 于璐璐, 邹华. 图像超分辨重建技术及其应用[J]. 光电子, 2013, 3(2): 25-28. http://dx.doi.org/10.12677/OE.2013.32006

参考文献

[1] S. M. Mansfield, W. R. Studenmund, G. S. Kino, et al. High- numerical-aperture lens system for optical storage. Optics Letters, 1993, 18(4): 305-307.
[2] C. J. R. Sheppard, Z. S. Hegedus. Axialbehavior of pupil-plane filters. Journal of the Optical Society of America, 1988, 5(5): 643-647.
[3] W. J. Kozlovshy, A. G. Dewey, A. Juliana, et al. Optical recording in the blue using a frequency-doubled diode laser. SPIE Proceedings, 1992, 1316: 410-415.
[4] F. Rousseau. A non-local approach for image su-per-resolution using intermodality priors. Medical Image Analysis, 2010, 14(4): 594-605.
[5] J. S. Wei. On the dynamic readout characteristic of nonlinear super-resolution optical storage. Optics Communications, 2013, 291: 143-149.
[6] T. Sandstrom. Printing sub-100nm random-logic patterns using binary mask and synthetic-aperture lithography (SAL). SPIE Proceedings, 1998, 3334: 590-596.
[7] W.-Q. Zhao, Z.-D. Feng and L.-R. Qiu. A shaped annular beam tri-heterodyne confocal microscope with good anti-environmental interference capability. Chinese Physics, 2007, 16(6): 1624-1631.
[8] T. Bauer. Super-resolution imaging: The use case of optical astronomy. Proceedings of the IADIS International Conference Computer Graphics, Visualization, Computer Vision and Image Processing, Rome, 2011: 49-59.
[9] 肖宿, 韩国强, 沃焱. 数字图像超分辨重建技术综述[J]. 计算机科学, 2009, 36(2): 8-12.
[10] R. R. Schulz, R. L. Stevenson. A Bayesian approach to image expansion for improved definition. IEEE Transactions on Image Processing, 1994, 3(3): 233-242.
[11] 郭良益, 王正明, 易成龙. 一种基于P-M扩散的超分辨图像重建方法[J]. 光电子激光, 2010, 21(2): 289-292.
[12] 周文婷, 王庆. 基于小波域HMT模型的序列图像超分辨率重建[J]. 计算机应用技术, 2009, 26(8): 3134-3136.
[13] C. B. Xiao, J. Yu and K. N. Su. Gibbs artifact reduction for POCS super-resolution image reconstruction. Frontiers of Com- puter Science in China, 2008, 2(1): 87-93.
[14] J. Liu, J. P. Qiao. Learning-based super-resolution reconstruction. CAAI Transactions on Intelligent Systems, 2009, 4(3): 199-207.
[15] 廖秀秀, 韩国强, 沃焱等. 基于流行学习和梯度约束的图像超分辨率重建[J]. 华南工工大学学报(自然科学版), 2012, 40(4): 8-15.
[16] 乔建萍. 基于独立分量分析的人脸超分辨率重建技术[J]. 计算机工程, 2011, 37(3): 180-182.
[17] 盛卫星, 方大纲, 杨正龙等. 一般非综合孔径雷达方位超分辨研究[J]. 南京理工大学学报, 2000, 24(4): 289-295.
[18] 戴光智, 孙宏伟, 杨欧. 超声成像检测中图像分辨率问题研究[J]. 电脑知识与技术, 2010, 6(21): 5937-5939.
[19] 刘文萍, 吴立德. 人脸图像自动识别技术[J]. 计算机应用与软件, 2000, 10: 25-30.
[20] 郭强, 许建民, 陈桂林. 三轴稳定平台下提高线列探测器光学遥感仪图像空间分辨率的方法研究[J]. 红外与毫米波学报, 2005, 24(1): 39-44.