DSC  >> Vol. 2 No. 3 (July 2013)

    具有输入饱和的航向离散非线性系统鲁棒后推设计
    Robust Backstepping Design for the Ship Course Discrete-Time Nonlinear System with Input Saturation

  • 全文下载: PDF(502KB)    PP.57-62   DOI: 10.12677/DSC.2013.23010  
  • 下载量: 2,570  浏览量: 8,139   国家自然科学基金支持

作者:  

王欣,李铁山,林彬:大连海事大学,大连

关键词:
船舶航向离散非线性系统自适应控制输入饱和限制Ship Course; Discrete Nonlinear System; Adaptive Control; Input Saturation Constraint

摘要:

本文研究了具有输入饱和的船舶航向离散非线性控制系统的鲁棒神经网络后推控制。首先,原系统通过变化得到一种新颖的能够预测变量船舶航向的离散非线性系统。然后利用后推技术进行该离散非线性系统的神经网络控制器设计。在控制器设计过程中,高阶神经网络用于逼近未知非线性方程。并且将输入饱和辅助系统引入存在输入饱和约束的船舶航向控制系统。和过去的控制方法相比,本文所提出的算法提高了航向离散非线性系统的鲁棒性。基于李雅普诺夫理论,闭环系统的所有的信号被证明半全局一致最终有界并且航向跟踪误差趋近于零。最后,运用育鲲轮仿真实例说明本文所提算法的有效性。

In this paper, a robust NN control scheme based on backstepping technique is proposed for the ship course discrete-time nonlinear systems with input saturation. Firstly, the original system is transformed into a novel ship course discrete-time nonlinear system which the state variable could be predicted. Then an adaptive NN controller design of the discrete-time nonlinear system is presented via backstepping. The HONNs are employed to approximate the unknown functions in the control design process. At the same time, an input saturation aided design system is introduced in the ship course controller in presence of input saturation constraint. Compared with previous research for discrete-time systems, the proposed algorithem improves the robustness of the systems. Based on Lyapunov Theory, the closed-loop systems are proven to be semi-globally uniformly ultimately bounded, and the tracking error converges to a small neighborhood of the origin. Finally, a simulation of vessel “yukun” is employed to illustrate the effectiveness of the proposed algorithem.

文章引用:
王欣, 李铁山, 林彬. 具有输入饱和的航向离散非线性系统鲁棒后推设计[J]. 动力系统与控制, 2013, 2(3): 57-62. http://dx.doi.org/10.12677/DSC.2013.23010

参考文献

[1] 王兴成, 姜晓红, 张健. 非线性船舶航向控制器backstepping设计[J]. 控制工程, 2002, 9(5): 63-65.
[2] 杜佳璐, 郭晨, 张显库. 船舶运动航向自适应非线性控制的仿真研究[J]. 系统仿真学报, 2005, 17(6): 1445-1448.
[3] 石芳. 棒自适应航向控制器的设计[D]. 大连海事大学, 2006.
[4] 杜佳璐, 郭晨, 李如铁. 基于逆推算法的非线性船舶航向跟踪控制器[J]. 大连海事大学学报, 2004, 2(1): 8-11.
[5] A. Witkowska, M. Tomera. A backstepping approach to ship course control. International Journal of Applied Mathematics and Computer Science, 2007, 17(1): 73-85.
[6] 王林, 陈楠, 高嵬. 基于backstepping的船舶航向自适应滑模控制[J]. 船电技术, 2012, 32(4): 16-18.
[7] J. L. Du, C. Guo. Nonlinear adaptive design for course tracking control of ship without a priori knowledge of controlgain. Jour- nal of Control Theory & Applications, 2005, 22(2): 315-320.
[8] 刘程, 李铁山, 陈纳新. 带有舵机特性的船舶航向自动舵DSC— MLP设计[J]. 哈尔滨工程大学学报, 2012, 33(1): 9-14.
[9] 张松涛. 基于离散模糊多模型的船舶航向控制器设计[J]. 控制工程, 2009, 16(3): 274-277.
[10] 宋立忠, 宋金明, 黄平. 船舶航向非线性系统离散变结构控制[J]. 海军工程大学学报, 2007, 19(4): 54-58.
[11] S. S. Ge, G. Y. Li and T. H. Lee. Adaptive NN control for a class of strict-feedback discrete-time nonlinear systems. Automatica, 2003, 39(5): 807-819.
[12] G. X. Wen, Y. J. Liu and C. L. P. Chen. Direct adaptive robust NN control for a class of discrete-time nonlinear strict-feedback SISO systems. Neural Computing and Applications, 2012, 21(6): 1423-1431.
[13] 贾欣乐, 杨盐生. 船舶运动数学模型[M]. 大连: 大连海事大学出版社, 1997.