# 双参数有理插值样条Double Parameter Rational Spline Interpolation

DOI: 10.12677/PM.2013.34038, PDF, 下载: 2,581  浏览: 7,155

Abstract: Two parameters of rational functions described good mathematics on a closed curve. This paper presents a method of double parameters of rational spline, and on the feasibility analysis, explored this interpolation function monotonicity, convexity. Actual numerical examples are used to illustrate the effectiveness of the new method. The algorithm is simple and easy to implement.

 [1] 王仁宏, 吴顺唐. 关于有理spline函数[J]. 吉林大学自然科学学报, 1978, 1: 58-70. [2] J. A. Gregory, R. Delbourgo. Piecewise rational quadratic interpolation to monotonic data. IMA Journal of Numerical Analysis, 1982, 2(2): 123-130. [3] R. Delbourgo. Shape preserving interpolation to convex data by rational functions with quadratic numerator and linear denominator. IMA Journal of Numerical Analysis, 1989, 9(1): 123-136. [4] Q. Duan, K. Djidjeli, W. G. Price and E. H. Twizell. A rational cubic spline based on function values. Computers & Graphics, 1998, 22(4): 479-486. [5] Q. Duan, L. Wang and E. H. Twizell. A C2 rational interpolation based on function values and constrained control of the interpolant curves. Applied Mathematics and Computation, 2005, 161(1): 311-322. [6] M. Z. Hussain, M. Hussain. Visualization of data subject to positive constraints. Information and Computing Science, 2006, 1(3): 149-160. [7] 方逵. 一种新的二元有理插值及其性质[J]. 工程图学学报, 2010, 4: 117-122. [8] 王强. 三次保形有理插值[J]. 合肥工业大学学报(自然科学版), 2005, 28(11): 1461-1464.