Na2WO4/SiO2浸渍磷改性催化剂制备及其反应动力学模型探索
Preparation and Exploration of Reaction Kinetics Model of Phosphate Modified Na2WO4/SiO2 Catalyst
DOI: 10.12677/HJCET.2013.34024, PDF, HTML, 下载: 3,222  浏览: 9,010  科研立项经费支持
作者: 樊奉瑭*:中国昆仑工程公司大庆分公司(大庆石化工程有限公司),大庆
关键词: 氧气氧化脱硫噻吩/石油醚动力学模型Oxygen; Oxidation Desulfurization; Thiophene/Petroleum Ether; Kinetics Model
摘要: 本文采用浸渍法制备Na2WO4P2.5/SiO2催化剂,并以SiO2为载体,对催化剂进行了X射线衍射(XRD),扫描电镜(SEM)和比表面积(BET)表征分析。采用噻吩/石油醚为模拟油,氧气为氧化剂,考察了催化剂P/W摩尔比及焙烧温度对脱硫效果的影响。实验表明,P/W摩尔比为2.5,600℃焙烧得到的Na2WO4P2.5/SiO2催化剂的脱硫效果最好。在噻吩/石油醚模拟油20 mL、催化剂用量0.12 g、氧气流量120 mL/min、氧化温度60℃,氧化时间40 min条件下,将所得到的产物,采用剂油比为1:1(体积)的甲醇、在萃取温度20℃下萃取10 min,脱硫率可以达到96.6%。在所研究的温度范围内,噻吩的氧化脱硫过程符合3/2级反应,Arrhenius活化能Ea = 25.914 kJ/mol,指前因子A = 470.4078 s−1。
Abstract: Na2WO4P2.5/SiO2 catalysts were prepared with the SiO2 supported by the impregnation method. The catalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and specific surface area (BET) analysis. The effects of P/W molar ratio and calcination temperature on the catalytic oxidation desulfurization of cata-lyst were investigated on the catalytic oxidation desulfurization of catalyst using O2 as oxidant, thiophene/thiophene as raw material. The result showed that the Na2WO4P2.5/SiO2 catalyst with P/W molar ratio 2.5, calcination temperature of 600°C was found to be optimal. Under the conditions of thiophene/petroleum ether model oil 20 mL, catalyst 0.12 g, oxygen 120 mL/min, at 60°C, react for 40 min, the reactants extracted using methanol with the volume ratio of sol-vent/oil of 1:1, at 20°C with 10 min, the desulfurization ratio reached to 96.6%. Under the reaction temperature range concerned, kinetics of the catalytic oxidation desulfurization of thiophene met the 3/2 order model with the Arrhenius activation energy Ea = 25.914 kJ/mol, A = 470.4078 s−1.
文章引用:樊奉瑭. Na2WO4/SiO2浸渍磷改性催化剂制备及其反应动力学模型探索[J]. 化学工程与技术, 2013, 3(4): 132-137. http://dx.doi.org/10.12677/HJCET.2013.34024

参考文献

[1] 李宇慧, 冯丽娟, 王景刚等. MoO3/介孔Al2O3-H2O2体系用于柴油催化氧化脱硫[J]. 化工进展, 2010, 29(S1): 659-661.
[2] 殷长龙, 夏道宏. 催化裂化汽油中类型硫含量分布[J]. 燃料化学学报, 2001, 29(3): 256-258.
[3] 李海燕, 宋华, 李峰等. 燃料油氧化脱硫的研究进展[J]. 石油化工, 2006, 35(11): 1110-1114.
[4] J. L. Wang, D. S. Zhao and K. X. Li. Oxidative desulfurization of dibenzothiophene using ozone and hydrogen peroxide in ionic liquid. Energy Fuels, 2010, 24(4): 2527-2529.
[5] D. S. Zhao, Z. M. Sun, F. T. Li, et al. Optimi-zation of oxidative desulfurization of dibenzothiophene using acidic ionic liquid as catalytic solvent. Journal of Fuel Chemistry and Tech-nology, 2009, 37(2): 194-198.
[6] X. Jiang, H. M. Li, W. S. Zhu, et al. Deep desulfurization of fuels catalyzed by surfactant-type decatung-states using as oxidant. Fuel, 2009, 88(3): 431-436.
[7] Y. H. Jia, G. Li and G. L. Ning. Efficient oxidative desulfurization (ODS) of model fuel with H2O2 catalyzed by MoO3/γ-Al2O3 under mild and solvent free conditions. Fuel Processing Technology, 2011, 92(1): 106-111.
[8] 杨敏, 李敏, 徐斌等. Na2WO4-H2O2体系催化1,2-丙二醇和丁二醇的选择氧化[J]. 石油化工, 2004, 33(11): 1055-1059.
[9] 王利, 吴晓军, 桂建舟等. 酸性离子液体[(CH2)4SO3HMIm] TSO在噻吩类氧化脱硫中的应用[J]. 石油化工高等学校学报, 2008, 21(3): 29-37.
[10] 宋华, 李国忠, 李正光. 磷钨酸季铵盐催化氧化汽油深度脱硫[J]. 燃料化学学报, 2010, 38(4): 439-444.