北方某高校教室空气品质的研究—以大连市为例
Study on Indoor air Quality of a University Classroom in Northern Region—Illustrated by the Case of Dalian
DOI: 10.12677/AEP.2013.33016, PDF, HTML,  被引量 下载: 3,584  浏览: 11,603 
作者: 游 峰, 吕阳*, 付柏淋, 陈滨, 董鹏, 叶志旺, 张倩:大连理工大学土木工程学院,大连
关键词: 室内空气品质二氧化碳颗粒物换气次数通风Indoor Air Quality; CO2; Particulate Matter; Ventilation Rate; Ventilation
摘要: 室内空气品质不仅影响人体的舒适和健康,而且对室内人员的工作和学习效率有着显著的影响。本研究以大连市某高校为研究对象,利用MCH-383SD CO2浓度/温、湿度记忆仪和TSI粉尘仪对教室秋季及冬季空气品质进行现场测量,测量项目包括CO2浓度、温度、相对湿度和颗粒物(PM2.5、PM10)浓度,探讨测量项目对学生学习效果的影响。研究得出,影响高校室内空气品质的最主要原因是教室CO2浓度超标、人均新风量不足以及教室人数超员。连续监测反映出室内CO2浓度的增长与室内人数及通风情况有关,且冬季采暖期室内CO2浓度远高于秋季。基于可行性前提,本文提出了改善高校室内空气品质的几种方法。
Abstract: Indoor air quality not only affects the comfort and health of the human body, but also has a significant impact on indoor work and learning efficiency. The research assesses a certain university in Dalian, using MCH-383SD and TSI Dust Monitor to measure the air quality of classroom, with measuring items including CO2 concentration, tempera- ture, relative humidity and repairable particulate matter (PM10, PM2.5), which aims to explore the impact of CO2 con- centration factors and their impacts on students’ learning outcomes. The study concludes that the biggest factors affect- ing indoor air quality are exceeded indoor CO2 concentration, insufficient fresh air volume (per person) and over-crowded classroom. The continuous monitoring reflects that the increase of the indoor CO2 concentration is related to the number of people in the classroom and the ventilation condition. And the indoor CO2 concentration is much higher in heating period of winter than the concentration in autumn. Based on the premise of the feasibility, the paper proposed several new methods to improve the indoor air quality in college during winter.
文章引用:游峰, 吕阳, 付柏淋, 陈滨, 董鹏, 叶志旺, 张倩. 北方某高校教室空气品质的研究—以大连市为例[J]. 环境保护前沿, 2013, 3(3): 95-102. http://dx.doi.org/10.12677/AEP.2013.33016

参考文献

[1] P. O. Fanger. Thermal Comfort. Malabar: Robert E Krieger Publishing Company, 1982.
[2] P. O. Fanger, J. Toftum. Prediction of thermal sensation in non- air-conditioned building in warm climates. Proceed-ings of 9th International Conference on Indoor Air Quality and Climate, Monterey, 30 June-5 July 2002, 92-97.
[3] R. J. De Dear, G. S. Bragger. Developing an adaptive model of thermal comfort and pref-erence. ASHRAE Transaction, 1998 104(1): 145-167.
[4] R. J. De Dear, G. S. Bragger. Thermal comfort in naturally ventilated building: Revisions to ASHRAE Standard 55. Energy and Buildings, 2002, 34(6): 549-561.
[5] L. K. Eduardo, H. T. Paulo. Acoustic, thermal and lu-minous comfort in classrooms. Building and Environment, 2004, 39, 1055-1063.
[6] S. C. Carpenter. Energy and IAQ impacts of CO2-based demand-controlled ventilation. ASHRAE Transaction, 1996; 102(2): 80e8.
[7] L. C. Ng, A. Musser, S. J. Emmerich and A. K. Persily. Airflow and indoor air quality models of DOE reference com-mercial buildings. Technical Note 1734. Gaithersburg: National Insti-tute of Standards and Technology, 2012.
[8] GB/T1883-2002, 室内空气质量标准[S]. 北京: 中国标准出版社, 2002.
[9] GB3095-2012, 环境空气质量标准[S]. 北京: 中国标准出版社, 2012.