The Density Functional Theory Investigation of Acetylene Hydrogenation on the Pd(111) Surface with Point Defect
DOI: 10.12677/JAPC.2013.23007, PDF, HTML, 下载: 2,785  浏览: 10,728  国家自然科学基金支持
作者: 王星, 杨作银, 李亚平*:北京化工大学理学院,北京
关键词: 乙炔反应机理密度泛函理论点缺陷Acetylene; Reaction Mechanism; Density Functional Theory; Point Defect
摘要: 本文通过密度泛函理论(DFT)研究Pd(111)表面上点缺陷对乙炔加氢生成乙烯反应的影响。计算结果表明乙炔,乙烯基和乙烯的结合能在Pd(111)和Pd(111)点缺陷表面按照Pd(111) > Pd-fd > Pd-sd的顺序递减。Pd-fd表示点缺陷在第一层,Pd-sd表示点缺陷在第二层。乙炔加氢生成乙烯基的能垒在Pd(111)表面上最大,在Pd-sd表面上最小,而乙烯基加氢生成乙烯的能垒在Pd(111)表面上最大,但是在Pd-fd表面上最小。因此Pd(111)表面上点缺陷的存在提高了乙炔加氢生成乙烯反应的活性。 The hydrogenation of acetylene to ethylene on the Pd(111) surface with point defect is explored by Density Functional Theory (DFT). The results show that the binding energies of acetylene, vinyl and ethylene on the Pd(111) and the Pd(111) with point defect are decreased as the trend of Pd(111) > Pd-fd > Pd-sd. The Pd-fd represents the point defect on the first layer, the Pd-sd represents the point defect on the second layer. The reaction barrier of acetylene hy- drogenation to vinyl is maximum on the Pd(111) surface and minimum on the Pd-sd surface, and the barrier of vinyl hydrogenation to ethylene is also maximum on the Pd(111) surface but minimum on the Pd-fd surface. The result shows that the presence of point defect in the Pd(111) surface promotes the activity of the hydrogenation of acetylene.
文章引用:王星, 杨作银, 李亚平. Pd(111)点缺陷表面乙炔加氢生成乙烯的密度泛函理论研究[J]. 物理化学进展, 2013, 2(3): 40-46. http://dx.doi.org/10.12677/JAPC.2013.23007


[1] 金栋, 吕效平. 世界聚乙烯工业现状及生产工艺研究新进展[J]. 化工科技市场, 2006, 29(2): 1-5.
[2] J. Huang, G. L. Rempel. Ziegler-Natta catalysts for olefin poly- merization: Mechanistic insights from metallocene systems. Pro- gress in Polymer Science, 1995, 20(3): 459-526.
[3] 张谦温, 刘新香, 朱起明. 炔烃和二烯烃选择性加氢现状与发展[J]. 石油化工, 1998, 27(1): 53-58.
[4] R. T. Vang, K. Honkala, S. Dahl, et al. Controlling the catalytic bond-breaking selectivity of Ni surfaces by step blocking. Na- ture Materials, 2005, 4(2): 160-162.
[5] R. T. Vang, K. Honkala, S. Dahl, et al. Ethylene dissociation on flat and stepped Ni(111): A combined STM and DFT study. Sur- face Science, 2006, 600(1): 66-77.
[6] T. Kravchuk, L. Vattuone, L. Burkholder, et al. Ethylene de- composition at undercoordinated sites on Cu(410). Journal of the American Chemical Society, 2008, 130(38): 12552-12553.
[7] B. Delley. From molecules to solids with the Dmol3 approach. The Journal of Chemical Physics, 2000, l13(18): 7756-7764.
[8] C. Matsumoto, Y. Kim, T. Okawa, et al. Low-temperature STM investigation of acetylene on Pd(111). Surface Science, 2005, 587(1-2): 19-24.
[9] P. A. Sheth, M. Neurock and C. M. Smith. First-principles analy- sis of the effects of alloying Pd with Ag for the catalytic hydro- genation of acetylene-ethylene mixtures. The Journal of Physical Chemistry B, 2005, 109(25): 12449-12466.
[10] D. Basaran, H. A. Aleksandrov, Z.-X. Chen, et al. Decomposi- tion of ethylene on transition metal surfaces M(111). A compara- tive DFT study of model reactions for M = Pd, Pt, Rh, Ni. Jour- nal of Molecular Catalysis A: Chemical, 2011, 344(1-2): 37-46.
[11] P. Tiruppathi, J. J. Low, A. S. Y. Chan, et al. Density functional theory study of the effect of subsurface H, C, and Ag on C2H2 hydrogenation on Pd(111). Catalysis Today, 2011, 165(1): 106- 111.
[12] T. Zheng, D. Stacchiola, H. C. Poon, et al. Determination of the structure of disordered overlayers of ethylene on clean and hy- drogen-covered Pd(111) by low-energy electron diffraction. Sur- face Science, 2004, 564(1-3): 71-78.
[13] L. V. Moskaleva, Z.-X. Chen, H. A. Aleksandrov, et al. Ethylene conversion to ethylidyne over Pd(111): Revisiting the mecha- nism with first-principles calculations. The Journal of Physical Chemistry C, 2009, 113(6): 2512-2520.
[14] B. Hammer, L. B. Hansen and J. K. Nørskov. Improved adsorp- tion energetics within density-functional theory using revised Per-dew-Burke-Ernzerhof functionals. Physical Review B: Con- densed Matter and Materials Physics, 1999, 59(11): 7413-7421.