应用物理  >> Vol. 3 No. 6 (August 2013)

金属银凝固与非晶晶化过程的分子动力学模拟
A Study on Solidification and Amorphous Crystallization of Metal Ag by Molecular Dynamics Simulation

DOI: 10.12677/APP.2013.36021, PDF, HTML, 下载: 3,615  浏览: 12,668  科研立项经费支持

作者: 黄 维, 梁工英:西安交通大学理学院材料物理系,西安

关键词: 分子动力学模拟非晶Ag晶化形核结构转变 Molecular Dynamics Simulation; Amorphous Ag; Crystallizing Nucleation; Structure Transformation

摘要: 文章采用分子动力学方法,以金属银为对象,模拟了面心立方金属的凝固和非晶化过程,借助于体系的内能变化、径向分布函数(RDF)、公共近邻分析(CNA)、原子可视化技术对凝固和晶化形核过程中的结构演变细节进行了描述。模拟结果表明,液态金属中就存在11% bcc结构的短程有序集团,随着液态金属不断过冷,bcc集团逐渐增加,在凝固前达到最高的31%,在非晶形成时,bcc集团大约有24%。当最近邻原子距离相同时,bcc结构单位原子所占体积大于fcc结构,有利于在液态金属和非晶中存在。这些bcc结构作为结晶时的非自发形核的核心,与周围的无序原子一起迅速转变为fcc结构和少量的hcp结构。在过冷液体和非晶系统中并没有发现fcc和hcp的结构,fcc结构为凝固和非晶晶化的很短周期中迅速转变而成。 The melting and solidification of Ag was simulated by molecular dynamics method. The structural transfor- mation of Ag during the metal solidification and amorphous crystallization was analyzed based on the variations of the internal energy, radial distribution function (RDF), common neighbor analysis (CNA), and atomic visualization technique. The simulation results showed that the embryonic crystals similar to body-centered cubic (bcc-like) structure (about 11%) already exist in the liquid metal, the content of bcc increases with cooling and it is up to 31% near the solidifying. About 24% bcc structure has in the amorphous structure. The volume per atom of bcc is larger than that of fcc, which is beneficial in the cooling liquid metal and amorphous structure. In the nucleation process, bcc-like embryonic crystals can be used as the nucleus with disorder atoms near the bcc to transform fcc crystal. There is no fcc and hcp structure in the cooling melt and amorphous structure. They are formed in the solidification directly.

 

文章引用: 黄维, 梁工英. 金属银凝固与非晶晶化过程的分子动力学模拟[J]. 应用物理, 2013, 3(6): 109-114. http://dx.doi.org/10.12677/APP.2013.36021

参考文献

[1] S. Alexander, J. McTague. Should all crystals be bcc? Landau theory of solidification and crystal nucleation. Physical Review Letters. 1978, 41(10): 702-705.
[2] J. Liu, J. Z. Zhao and Z. Q. Hu. Kinetic details of the nucleation in supercooled liquid metals. Applied Physics Letters, 2006, 89(3): 031903.
[3] Y. Zhao, J. Z. Zhao and Z. Q. Hu. Molecu-lar dynamics simula- tion of the nucleation in a supercooled Ni3Al. Acta Metallurgica Sinica, 2008, 44(10): 1157-1160.
[4] P. R. ten Wolde, M. J. Ruiz-Montero and D. Frenkel. Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling. The Journal of Chemical Phy- sics, 1996, 104(24): 9932-9947.
[5] N. Iqbal, N. H. Van Dijk, S. E. Offerman, et al. Real-time ob- servation of grain nucleation and growth during solidifi-cation of aluminium alloys. Acta Materialia, 2005, 53(10): 2875-2880.
[6] S. J. Khan, C. M. Sorensen and A. Chakrabarti. Computer simu- lations of nucleation of nanoparticle superclusters from solution. Langmuir, 2012, 28(13): 5570-5579.
[7] S. H. Xu, H. W. Zhou, Z. W. Sun, et al. Formation of an fcc phase through a bcc metastable state in crystallization of charged colloidal particles. Physi-cal Review E, 2010, 82(1): 010401.
[8] D. C. Wu, G. Y. Liang, L. Li, et al. Microstructural investigation of electrochemical hydrogen storage in amorphous Mg-Ni-La alloy. Materials Science and Engineering: B, 2010, 175(3): 248- 252.
[9] W. G. Hoover. Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 1985, 31(3): 1695-1697.
[10] W. G. Hoover. Constant-pressure equations of motion. Physical Review A, 1986, 34(3): 2499-2500.
[11] M. S. Daw, M. I. Baskes. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Physical Re- view Letters, 1983, 50(17): 1285-1288.
[12] M. S. Daw, M. I. Baskes. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in met- als. Physical Review B, 1984, 29(12): 6443-6453.
[13] X. W. Zhou, H. N. G. Wadley, R. A. Johnson, et al. Atomic scale structure of sputtered metal multilayers. Acta Materialia, 2001, 49(19): 4005-4015.
[14] F. A. Celik, S. Kazanc, A. K. Yidiz, et al. Pressure effect on the structural properties of amorphous Ag during isothermal an- nealing. Intermetallics, 2008, 16(6): 793-800.
[15] R. L. Andrew. Molecular modeling: Principle and practice. Ber- lin: Springer-Verlag, 1996: 357-359.
[16] J. D. Honeycutt, H. C. Andersen. Molecular dy-namics study of melting and freezing of small Lennard-Jones clusters. The Jour- nal of Physical Chemistry, 1987, 91(19): 4950-4963.
[17] H. Tsuzuki, P. S. Branicio and J. P. Rino. Structural characteriza- tion of deformed crystals by analysis of common atomic neigh- borhood. Computer Physics Communications, 2007, 177(6): 518- 523.