渗流力学进展  >> Vol. 3 No. 3 (September 2013)

二维裂隙密度及其渗透率的逾渗关系研究
Study of the Percolation Relationship between Fracture Density and Permeability of 2-D Facture Networks

DOI: 10.12677/APF.2013.33006, PDF, HTML, XML, 下载: 3,487  浏览: 12,368  国家科技经费支持

作者: 万菊英, 舒卫兵:中国科学院南海海洋研究所,中国科学院边缘海地质重点实验室,广州中国科学院大学,北京;许鹤华*:中国科学院南海海洋研究所,中国科学院边缘海地质重点实验室,广州

关键词: 低渗透储层连续逾渗裂隙密度宏观渗透率排除体积Low-Permeability Reservoirs; Continuum Percolation; Fracture Density; Macroscopic Permeability; Excluded Area

摘要: 在低渗透介质储存中,裂隙是石油运移的主要通道。因而裂隙介质的渗透率是石油勘探的一个重要参数。应用连续逾渗模型分析,把低渗透储存的裂隙网络合理简化,能够对深层复杂介质的渗透规律进行研究。使用排除体积对裂隙密度进行无量纲化,从而使裂隙的宏观性与裂隙的形状无关。使用Monte Carlo方法模拟得到不同裂隙密度时的裂隙网络图,然后基于连续逾渗模型,采用有限元方法利用COMSOL Multiphysics求解器解,数值模拟得到裂隙的渗透率与无量纲化密度成乘幂关系。该模拟结果可能为裂隙网络渗透率的定量评价提供一个简单而又实用的方法。这一规则的发现也增强了逾渗理论在油气田勘探中的应用。
Abstract: Fracture networks strongly influence oil migration in reservoirs, especially in low-permeability reservoirs. So the parameter of fracture permeability plays an important role during the exploration of oil and gas fields. Simplifying the fracture network of reservoirs, and continuum percolation theory are successfully applied for studying the fracture permeability in deep and complex media. By using excluded area to dimensionless the fracture density, macroscopic properties of fracture networks become independent of fracture shape. Using Monte Carlo simulation, the facture net-work with different fracture density is obtained, and then based on continuum percolation theory and finite element analysis software, called COMSOL Multiphysics, we get the relationship between dimensionless density and macro-scopic permeability, which is scaling law. The simulated results may offer a simple and practical method to evaluate frac-ture permeability quantitatively and enhance the applications of percolation theory in the exploration of oil and gas fields.

文章引用: 万菊英, 许鹤华, 舒卫兵. 二维裂隙密度及其渗透率的逾渗关系研究[J]. 渗流力学进展, 2013, 3(3): 35-41. http://dx.doi.org/10.12677/APF.2013.33006

参考文献

[1] B. Berkowitz. Analysis of fracture network connectivity using- percolation theory. Mathematical Geology, 1995, 27(4): 467- 483.
[2] A. Jafari. Estimation of equivalent fracture network permeability using fractal and statistical network properties. Journal of Petro- leum Science and Engineering, 2012, 92-93: 110-123.
[3] 李睿冉, 张国玉. 裂隙岩体离散裂隙网络介质模型研究[J]. 山东农业大学学报(自然科学版), 2009, 41(2): 279-282.
[4] S. R. Broadbent, J. M. Hammersly. Percolation processes. Proceedings of the Cambridge Philosophical, 1957, 53(3): 629-641.
[5] A. Yazdi, H. Hamzehpour and M. Sahimi. Permeability, porosity, and percolation properties of two-dimensional disordered frac- ture networks. Physical Review, 2011, 84(4): 1-10.
[6] A. Jafari, T. Babadagli. Relationship between percolation-fractal properties and permeability of 2-D fracture networks. International Journal of Rock Mechanics & Mining Science, 2013, 60: 353-362.
[7] 仵彦卿. 岩土水力学[M]. 北京: 科学出版社, 2009.
[8] G. I. Barenblatt, I. P. Zheltov and I. N. Kochina. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. Journal of Applied Mathematics and Mechanics, 1960, 24(5): 852-864.
[9] W. R. Rossen, Y. Gu and L. W. Lake. Connectivity and perme- ability in fracture networks obeying power-law statistics. Pro- ceedings of the SPE Permian Basin Oil and Gas Recovery Conference, Midland, March 2000, 21-23.
[10] M. Masihi, P. R. King and P. Nurafza. Fast estimation of con- nectivity in fractured reservoirs using percolation theory. Society of Petroleum Engineers, 2007, 12(2): 167-178.
[11] K. Khamforoush, K. Shams, J. F. Thovert and P. M. Adler. Permeability and percolation of anisotropic three-dimensional fracture networks. Physical Review E, 2008, 77(5): 056307.
[12] 张德丰. MATLAB 概率与数理统计分析[M]. 北京: 机械工业出版社, 2010.
[13] D. Stauffer, A. Aharony. Introduction to percolation theory. Bris- tol: Taylor and Francis, 1992.
[14] P. R. King, S. V. Buldyrev, N. V. Dokholyan, S. Havlin, E. Lopez, G. Paul and H. E. Stanley. Percolation theory. London Petrophysical Society Newsletter; 2002.
[15] I. Balberg, C. H. Anderson, S. Alexander and N. Wagner. Excluded volume and its relation to the onset of percolation. Phy- sical Review B, 1984, 30(7): 3933-3943.
[16] L. Vaentini, D. Perugini and G. Poli. The small-world topology of rock fracture networks. Physica A, 2007, 377(1): 323-328.
[17] V. V. Mourzenko, J. F. Thovert and P. M. Adler. Percolation and permeability of three dimensional fracture networks with a power law size distribution. In: J. Lévy-Véhel and E. Lutton, Eds., Fractals in Engineering, Springer, London, 2005, 81-95.
[18] 贺瑶瑶, 刘建军. 裂隙-孔隙介质等效渗透率的数值试验研究[J]. 渗流力学进展, 2011, 1(2): 7-20.