n-型碲化铅纳米片的电化学制备及其热电性能研究
Study on Electrochemical Preparation and Thermo-Eletronic Performance of n-Type PbTe Nanoplates
DOI: 10.12677/MS.2013.35040, PDF, HTML, 下载: 3,419  浏览: 13,362  国家自然科学基金支持
作者: 缪世群, 金永龙:南通大学理学院,南通;李玉松, 缪建文, 葛存旺*:南通大学化学化工学院,南通
关键词: 电化学纳米结构PbTe合成方法热电材料Electrochemistry; Nanostructure; Pbte; Synthesis; Thermoelectric Materials
摘要: PbTe是一类具有很高的热电转换效率的材料。本文以阴极化碲电极为碲源,3-巯基丙酸为保护剂,在水相中利用电化学方法制备了n-PbTe纳米片。透射电子显微镜和X-射线衍射仪的结果表明合成产物是面心立方结构的PbTe纳米片,保护剂的存在会在加热过程中形成PbS,形成纳米尺寸的PbTe/PbS杂化材料;利用红外吸收光谱仪首次研究了合成PbTe的近红外吸收;用热电测量仪测定了PbTe纳米粒子的电阻率、Seebeck系数、热导率和品质因数ZT等热电性能参数,结果表明合成的PbTe纳米片的热导系数和品质因数得到较体相PbTe有明显的改善。该方法制备条件温和,操作简单,绿色环保。
>PbTe is a kind of thermoelectric material of high thermoelectric conversion efficiency. In this papern-type PbTe nanoplates were prepared by using cathodic tellurium electrode as tellurium source and 3-mercaptopropionic acid as protective agent in the aqueous medium. The result of transmission electron microscopy and X-ray diffraction showed that as-prepared PbTe nanoplates were in face-centered cubic structure and PbS and nanoscale hybrid PbTe/PbS materials were formed during the heating process at presence of the protective agent. The near-infrared absorption of as-synthetic PbTe nanocrystals was firstly evaluated with infrared spectrophotometer. The thermoelectric performance including electrical resistivity, Seebeck coefficient, thermal conductivity and the figure of merit ZT was assessed with thermoelectric analyzer, which indicated that thermal conductivity and figure of merit of as-prepared PbTe nanocrystals were improved in contrast to the bulk materials. Furthermore, the synthesis strategy presented here could be considered as an effective methodology with mild conditions, simple operation and environmental safety.
文章引用:缪世群, 金永龙, 李玉松, 缪建文, 葛存旺. n-型碲化铅纳米片的电化学制备及其热电性能研究[J]. 材料科学, 2013, 3(5): 222-229. http://dx.doi.org/10.12677/MS.2013.35040

参考文献

[1] K. F. Hsu, S. Loo, F. Guo, et al. Cubic AgPbmSbTe2+m: Bulk ther- moelectric materials with high figure of merit. Science, 2004, 303(5659): 818-821.
[2] S. Song, J. Fu, X. Li, et al. Facile synthesis and thermoelectric properties of self-assembled Bi2Te3 one-dimensional nanorod bundles. Chemistry—A European Journal, 2013, 19(8): 2889- 2894.
[3] E. H. Sargent. Infrared quantum dots. Advanced Materials, 2005, 17(5): 515-522.
[4] W. G. Lu, J. Y. Fang, K. L. Stokes, et al. Shape evolution and self assembly of monodisperse PbTe nanocrystals. Journal of the American Chemical Society, 2004, 126(38): 11798-11799.
[5] R. J. Ellingson, M. C. Beard, J. C. Johnson, et al. Highly effi- cient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Letters, 2005, 5(5): 865-871.
[6] J. M. Nedeljkovic, M. T. Nenadovic, O. I. Micic, et al. Enhanced photoredox chemistry in quantized semiconductor colloids. The Journal of Physical Chemistry, 1986, 90(1): 12-13.
[7] B. Poudel, Q. Hao, Y. Ma, et al. High-thermoelectric perform- ance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634-638.
[8] D. M. Rowe. New materials and performance limits for ther- moelectric cooling. In: G. A. Slack, Ed., CRC Handbook of Thermoelectrics, Boca Raton: CRC Press, 1995: 407-440.
[9] T. C. Harman, M. P. Walsh, B. E. Laforge, et al. Nanostructured thermoelectric materials. Journal of Electronic Materials, 2005, 34(5): L19-L22.
[10] J. R. Sootsman, R. J. Pcionek, H. J. Kong, et al. Strong reduction of thermal conductivity in nanostructured PbTe prepared by ma- trix encapsulation. Chemistry of Materials, 2006, 18(21): 4993- 4995.
[11] 卢艳, 宋英, 孙秋, 王福平. Ag复合(Ca0.9Yb0.1)3Co4O9陶瓷的制备及其热电性能[J]. 无机化学学报, 2009, 25(9): 1682- 1685.
[12] P. J. Taylor, T. C. Harman, N. K. Dhar, et al. IV-VI device arrays: Microfabrication and specific contact resistivity. Applied Phys- ics Letters, 2004, 85(22): 5415-5417.
[13] V. C. S. Reynoso, A. M. D. Paula, R. F. Cuevas, et al. PbTe quantum dot doped glasses with absorption edge in the 1.5 [micro sign]m wavelength region. Electronics Letters, 1995, 31(12): 1013-1015.
[14] C. Chubilleau, B. Lenoir, S. Migot, et al. Laser fragmentation in liquid medium: A new way for the synthesis of PbTe nanoparti- cles. Journal of Colloid and Interface Science, 2011, 357(1): 13- 17.
[15] A. Jdanov, J. Pelleg, Z. Dashevsky, et al. Growth and charac- terization of PbTe films by magnetron sputtering. Materials Sci- ence and Engineering B-Solid State Materials for Advanced Te- chnology, 2004, 106(1): 89-94.
[16] L. Jiang, Y. J. Zhu, J. B. Cui. Nanostructures of metal tellurides (PbTe, CdTe, CoTe2, Bi2Te3, and Cu7Te4) with various mor- phologies: A general solvothermal synthesis and optical proper- ties. European Journal Of Inorganic Chemistry, 2010, 19: 3005- 3011.
[17] G. F. Zou, Z. P. Liu, D. B. Wang, et al. Selected-control sol- vothermal synthesis of nanoscale hollow spheres and single- crystal tubes of PbTe. European Journal Of Inorganic Chemistry, 2004, 22: 4521-4524.
[18] J. E. Murphy, M. C. Beard, A. G. Norman, et al. PbTe colloidal nanocrystals: Synthesis, characterization, and multiple exciton generation. Journal of the American Chemical Society, 2006, 128(10): 3241-3247.
[19] B. Qiu, Y. H. Ni and L. Zhang. Controllable synthesis of X- shaped flowerlike PbTe microcrystals via a simple hydrothermal process. Journal of Crystal Growth, 2008, 310(18): 4199-4204.
[20] Y. H. Ni, B. Qiu, J. M. Hong, et al. Hydrothermal synthesis, characterization, and influence factors of PbTe nanocrystals. Materials Research Bulletin, 2008, 43(10): 2668-2676.
[21] H. B. Shen, H. Z. Wang, X. Chen, et al. Size- and shape-con- trolled synthesis of CdTe and PbTe nanocrystals using tellurium dioxide as the tellurium precursor. Chemistry of Materials, 2010, 22(16): 4756-4761.
[22] C. W. Ge, Y. Zhao, J. Hui, et al. Cathodic stripping synthesis and cytotoxity studies of glutathione-capped CdTe quantum dots. Journal of Nanoscience and Nanotechnology, 2011, 11(8): 6710- 6717.
[23] C. W. Ge, M. Xu, J. Liu, et al. Facile synthesis and application of highly luminescent CdTe quantum dots with an electrogener- ated precursor. Chemical Communications, 2008, 4: 450-452.
[24] J. A. Dean. Lange’s handbook of chemistry. 15th Edition, New York: McGraw-Hil, 1998, 8: 122.
[25] K. Vengatajalabathy Gobi, F. Mizutani. Layer-by-layer construc- tion of an active multilayer enzyme electrode applicable for di- rect amperometric determination of cholesterol. Sensors and Actuators B: Chemical, 2001, 80(3): 272-277.
[26] B. B. Weng, H. Z. Wu, J. X. Si, et al. Band gap energies and re- fractive indices of epitaxial Pb(1-x)Sr(x)Te thin films. Chinese Physics Letters, 2008, 25(9): 3334-3337.
[27] J. Q. Li, S. P. Li, Q. B. Wang, et al. Effect of Ce-doping on ther- moelectric properties in PbTe alloys prepared by spark plasma sintering. Journal of Electronic Materials, 2011, 40(10): 2063- 2068.
[28] S. P. Li, J. Q. Li, Q. B. Wang, et al. Synthesis and thermoelectric properties of the (GeTe)(1-x)(PbTe)(x) alloys. Solid State Sciences, 2011, 13(2): 399-403.
[29] W. W. Scanlon. Recent advances in the optical and electronic properties of PbS, PbSe, PbTe and their alloys. Journal of Phys- ics and Chemistry of Solids, 1959, 8: 423-428.
[30] J. P. Heremans, C. M. Thrush and D. T. Morelli. Thermopower enhancement in lead telluride nanostructures. Physical Review B, 2004, 70(11): 115334.
[31] J. P. Heremans, V. Jovovic, E. S. Toberer, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008, 321(5888): 554-557.