SA  >> Vol. 2 No. 3 (September 2013)

    Kamp保费原理的非参数估计
    Nonparametric Estimation of Kamp Premium Principle

  • 全文下载: PDF(281KB) HTML    PP.70-75   DOI: 10.12677/SA.2013.23010  
  • 下载量: 2,021  浏览量: 7,737  

作者:  

熊 佳,温利民:江西师范大学数信学院,南昌

关键词:
Kamp保费原理贝叶斯模型信度估计收敛性 Kamp Premium Principle; Bayesian Model; Credibility Estimates; Convergence

摘要:

本文结合广义加权保费对Kamp保费原理进行简单介绍,并通过建立贝叶斯理论模型,给出一组样本对参数假定一个先验分布,且利用贝叶斯公式计算后验均值。在此前提下对Kamp保费原理进行贝叶斯估计,线性贝叶斯估计以及对参数进行渐进分析后得到其信度估计。同时,对此估计证明其渐进性。最后,用数值模拟验证估计的收敛性。

Based on the generalized weighted premium, this paper gives a brief introduction on Kamp pre- mium principle. Through the establishment of Bayesian theory model, a set of samples is given to assume that parameters have a prior distribution. Then the Bayesian formula is used to calculate the posterior mean value. We make Bayesian estimation and linear Bayesian estimation on the Kamp premium principle, and get the credibility estimation of Kamp premium principle after analyzing the approximate of parameters under above conditions. At the same time, we prove the asymptotic of this estimation. Finally, the convergence of the provided estimates is tested by the numerical simulation.

文章引用:
熊佳, 温利民. Kamp保费原理的非参数估计[J]. 统计学与应用, 2013, 2(3): 70-75. http://dx.doi.org/10.12677/SA.2013.23010

参考文献

[1] W. R. Heilmann. Decision theoretic foundations of credibility theory. Insurance: Mathematics and Economics, 1989, 8: 77-95.
[2] H. U. Gerber. An introduction to Mathematical risk theory. Phi- ladelphia: S.S. Heubner Foundation, 1979: Monograph Series 8.
[3] H. U. Gerber. Credibility for Esscher premium. Bulletin of the Swiss Asso-ciation of Actuaries, 1980, 3: 307-312.
[4] E. Furman, R. Zitikis. Weighted premium calculation principles. Insurance: Mathematics and Economics, 2008, 42(1): 459-465.
[5] W. Herff, B. Jochems and U. Kamps. The inspection paradox with random time. Statistical Papers, 1997, 38: 103-110.
[6] U. Kamps. On a class of premium principles including the Ess- cher principle. Scandinavian Actuarial Journal, 1998, 1: 75-80.
[7] K. D. Schmidt, M. Timpel. Experience rating under weighted squared error loss. Blätter der DGVFM, 1995, 22(2): 289-307.
[8] M. Pan, R. Wang, and X. Wu. On the consistency of credibility premiums regarding Esscher principle. Insurance: Mathe-matics and Economics, 2008, 42: 119-126.
[9] D. Vylder. Estimation of IBNR claims by credibility theory. Insurance: Mathematics and Economics, 1982, 1:35-40.
[10] 温利民,风险保费的信度估计及其统计推断[J]. 华东师范大学学报, 2010, 3: 103-270.
[11] 王伟等. Esscher保费原理下信度估计的比较[J]. 华东师范大学学报, 2010, 3: 71-78.
[12] L. Wen, X. Wu and X. Zhao. The credibility premiums under generalized weighted loss functions. Journal of Industrial and Management Optimization, 2009, 5(4): 893-910.
[13] G. Shorack, J. Wellner. Empirical processes with applications to statistics. New York: Wiley, 1986.
[14] Y. J. Kim. Credibility theory based on trimming. Insurance: Ma- thematics and Economics. 2013, 53: 36-47.