γ-Bi 2MoO 6微米球的制备及其光电催化性能
Preparation and Photocatalytic Electrocatalytic Properties of γ-Bi2MoO6
DOI: 10.12677/AMC.2013.12004, PDF, HTML, XML,  被引量 下载: 4,521  浏览: 18,029  国家科技经费支持
作者: 谢会东*:西安建筑科技大学,理学院,西安;西安建筑科技大学,教育部西北水资源环境生态重点实验室,西安;杨薇, 王志奇, 姚亚红, 赵亚娟:西安建筑科技大学,理学院,西安;王晓昌:西安建筑科技大学,教育部西北水资源环境生态重点实验室,西安
关键词: 钼酸铋制备光催化电催化Bismuth Molybdate; Preparation; Photocatalysis; Electrocatalytic
摘要: Bi(NO 3) 3•5H 2O(NH 4) 6Mo 7O 24·4H 2O等为原料,采用混合溶剂热法制备了γ-Bi2MoO 6。采用X-射线粉末衍射(XRD)、红外光谱(IR)和扫描电镜(SEM)等手段对制得的γ-Bi 2MoO6进行了分析表征。所得产物为单相微米球状,光催化实验显示产物具有一定的降解甲基橙性能,循环伏安曲线显示产物能够促进KK 4Fe(CN) 6/ K 3Fe(CN) 6电对之间的电子传递。 γ-Bi 2MoO 6was prepared by a mixed solvothermal method, using Bi(NO 3) 3·5H 2O and (NH 4) 6Mo 7O 24·4H 2O as raw materials. X-ray powder diffraction (XRD), infrared spectra (IR), and scanning electron microscopy (SEM) were used to characterize the as-prepared γ-Bi 2MoO 6. The as-prepared products showed a single phase and a microsphere structure. The photodegradation test showed that γ-Bi2MoO6 had performance degradation of methyl orange. The cyclic voltammetry demonstrated that γ-Bi2MoO6 accelerated the rate of electron transfer of K 4Fe(CN) 6/ K 3Fe(CN) 6.
文章引用:谢会东, 杨薇, 王志奇, 姚亚红, 赵亚娟, 王晓昌. γ-Bi 2MoO 6微米球的制备及其光电催化性能[J]. 材料化学前沿, 2013, 1(2): 13-16. http://dx.doi.org/10.12677/AMC.2013.12004

参考文献

[1] 陈超, 宋立民. 可见光响应的铋系光催化剂研究进展[J]. 天津工业大学学报, 2011, 30(5): 54-58.
[2] H. D. Xie, D. Z. Shen, X. Q. Wang and G.. Q. Shen. Microwave hydrothermal synthesis and visible-light photocatalytic activity of γ-Bi2MoO6 nanoplates. Materials Chemistry and Physics, 2008, 110(2-3): 332-336.
[3] R. Murugan. Investigation on ionic conductivity and Raman spectra of γ-Bi2MoO6. Physica B, 2004, 352(1-4): 227-232.
[4] J. Q. Yu, A. Kudo. Hydrothermal synthesis and photocatalytic property of 2-dimensional bismuth molybdate nanoplates. Che- mistry Letters, 2005, 34(11): 528-1529.
[5] J. M. Song, H. Q. Hu, X. F. Mei, Y. L. Shi, M. S. Ren and G. Hu. Surfactant-assisted hydrothermal synthesis and photocatalytic aci- tivity of octahedral γ-Bi2MoO6. Journal of Anhui University (Na- tural Science Edition), 2013, 37(1): 73-79.
[6] F. Zhou, R. Shi and Y. F. Zhu. Significant enhancement of the visible photocatalytic degradation performances of γ-Bi2MoO6 nanoplate by graphene hybridization. Journal of Molecular Ca- talysis A: Chemical, 2011, 340(1): 77-82.
[7] P. F. Wang, Y. H. Ao, C. Wang, J. Hou and J. Qian. A one-pot method for the preparation of graphene-Bi2MoO6 hybrid photo- catalysts that are responsive to visible-light and have excellent photocatalytic activity in the degradatio of organic pollutants. Carbon, 2012, 50(14): 5256-5264.
[8] R. Machado, M. G. Stachiotti and R. L. Migoni. First-principles determination of ferroelectric instabilities in Aurivillius com- pounds. Physical Review B, 2004, 70: 214112.
[9] Y. H. Shi, S. H. Feng and C. S. Cao. Hydrothermal synthesis and characterization of Bi2MoO6 and Bi2WO6. Materials Letters, 2000, 44(3-4): 215-218.
[10] A. M. Beale, G. Sankar. In situ study of the formation of cry- stalline bismuth molybdate materials under hydrothermal con- ditions. Chemistry of Materials, 2003, 15(1): 146-153.
[11] Z. J. Zhang, W. Z. Wang, J. Ren and J. H. Xu. Highly efficient photocatalyst Bi2MoO6 induced by blue light-emitting diode. Applied Catalysis B: Environmental, 2012, 123-124: 89-93.
[12] 刘国聪, 张婕. 钼酸铋的水热合成和光催化性能[J]. 惠州学院学报(自然科学版), 2012, 32(6): 5-10.
[13] T. Zhang, J. F. Huang, S. Zhou, H. B. Ouyang, L. Y. Cao and A. T. Li. Microwave hydrothermal synthesis and optical properties of flower-like Bi2MoO6 crystallites. Ceramics International, 2013, 39(7): 7391-7394.
[14] J. H. Bi, J. G. Che, L. Wu and M. H. Liu. Effects of the solvent on the structure, morphology and photocatalytic properties of Bi2MoO6 in the solvothermal process. Materials Research Bu- lletin, 2013, 48(6): 2071-2075.
[15] B. Yuan, C. H. Wang , Y. Qi, X. L. Song, K. Mu, P. Guo, L. T. Meng and H. M. Xi. Decorating hierarchical Bi2MoO6 micro- spheres with uniformly dispersed ultrafine Ag nanoparticles by an in situ reduction process for enhanced visiblelight-induced photocatalysis. Colloid Surface A, 2013, 425: 99-107.
[16] D. Saha, G. Madras and T. N. Guru. Row solution combustion synthesis of g (L)-Bi2MoO6 and photocatalytic activity under so- lar radiation. Materials Research Bulletin, 2011, 46: 1252-1256.
[17] 杜永芳, 宋继梅, 王红, 赵绍娟, 胡海琴. 共沉淀法制备α- Bi2Mo3O12和γ-Bi2MoO6及可见光催化性能[J]. 合肥工业大学学报(自然科学版), 2012, 35(11): 1500-1505.
[18] L. J. Xie, J. F. Ma and G. J. Xu. Preparation of a novel Bi2MoO6 flake-like nanophotocatalyst by molten salt method and evalu- ation for photocatalytic decomposition ofrhodamine B. Materials Chemistry and Physics, 2008, 110(2-3): 197-200.
[19] Y. C. Miao, G. F. Pan, Y. N. Huo and H. X. Li. Aerosol-spraying preparation of Bi2MoO6: a visible photocatalyst in hollow micro- spheres with a porous outer shell and enhanced activity. Dyes and Pigments, 2013, 99(2): 382-389.
[20] M. Y. Zhang, C. L. Shao, P. Zhang, C. Y. Su, X. Zhang, P. P. Liang, Y. Y. Sun and Y. C. Liu. Bi2MoO6 microtubes: Controlled fabrication by using electrospun polyacrylonitrile microfibers as template and their enhanced visible light photocatalytic activity. Journal of Hazardous Materials, 2012, 225-226: 155-163.
[21] Y. S. Xu, Z. J. Zhang and W. D. Zhang. Facile preparation of he- terostructured Bi2O3/Bi2MoO6 hollow microspheres with en- hanced visible-light-driven photocatalytic and antimicrobial acti- vity. Materials Research Bulletin, 2013, 48(4): 1420-1427.
[22] 李红花, 李坤威, 汪浩. 固溶体Bi2Mo1-xWxO6的水热合成及光催化性能[J]. 无机化学学报, 2010, 26(1): 138-143.