肾素–血管紧张素–醛固酮系统对胰岛素分泌的调节作用
The Regulatory Effect of Renin-Angiotensin-Aldosterone System on Insulin Secretion
DOI: 10.12677/JPS.2013.13003, PDF, HTML, 下载: 4,550  浏览: 20,407  国家自然科学基金支持
作者: 贾英丽*, 杨宝学*:天然药物及仿生药物国家重点实验室,北京大学基础医学院药理学系,北京
关键词: 胰岛素分泌血管紧张素血管紧张素转化酶醛固酮 Insulin Secretion; Angiotensin; Angiotensin Converting Enzyme; Aldosterone
摘要:

糖尿病严重威胁着人类的健康,而糖尿病的发生与胰岛功能失调有密切联系。肾素血管紧张素醛固酮系统在胰岛表达,并对胰岛功能和胰岛素分泌具有调节作用。其中,血管紧张素II和醛固酮能够抑制胰岛素分泌,而血管紧张素转化酶2活性升高可促进胰岛素分泌。同时,血管紧张素转化酶抑制剂能够预防胰腺的炎症反应及纤维化,抑制胰岛内部的细胞凋亡,进而改善胰岛功能、促进胰岛素分泌。而血管紧张素受体拮抗剂能增加胰腺血流量及预防炎症反应及纤维化,从而促进胰岛素分泌。因此,肾素血管紧张素醛固酮系统可能成为糖尿病的治疗靶点。 Diabetes mellitus is a serious threat to human health and its occurrence is closely related to islet dysfunction. The renin-angiotensin-aldosterone system is expressed in islets and plays an important role in islet function and insulin secretion. Angiotensin II and aldosterone can inhibit the secretion of insulin. Angiotensin-converting enzyme promotes insulin secretion. The angiotensin converting enzyme inhibitor can improve pancreatic function and insulin secretion via the amelioration of intra-islets inflammation, fibrosis and apoptosis. The angiotensin receptor blocker can ameliorate intra-islets inflammation, fibrosis so as to improve insulin secretion. Renin-angiotensin-aldosterone system may become a therapeutic target for the treatment of diabetes.

文章引用:贾英丽, 杨宝学. 肾素–血管紧张素–醛固酮系统对胰岛素分泌的调节作用[J]. 生理学研究, 2013, 1(3): 11-15. http://dx.doi.org/10.12677/JPS.2013.13003

参考文献

[1] L. Guariguata. By the numbers: New estimates from the IDF Diabetes Atlas Update for 2012. Diabetes Research and Clinical Practice, 2012, 98(3): 524-525.
[2] R. Saxena, B. F. Voight, V. Lyssenko, et al. Genome-wide asso- ciation analysis identifies loci for type 2 diabetes and triglyc- eride levels. Science, 2007, 316(5829): 1331-1336.
[3] R. Sladek, G. Rocheleau, J. Rung, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature, 2007, 445(7130): 881-885.
[4] S. E. Kahn, R. L. Hull, K. M. Utzschneider. Mechanisms linking obesity to insulin resistance and Type 2 diabetes. Nature, 2006, 444(7121): 840-846.
[5] C. Weyer, C. Bogardus, D. M. Mott, et al. The natural history of insulin secretory dysfunction and insulin resistance in the pa- thogenesis of type 2 diabetes mellitus. Journal of Clinical Inves- tigation, 1999, 104(6): 787-794.
[6] P. S. Leung. Mechanisms of protective effects induced by blockade of the renin-angiotensin system: Novel role of the pancreatic islet angiotensin-generating system in Type 2 diabetes. Diabetic Medicine, 2007, 24(2): 110-116.
[7] A. J. Scheen. Renin-angiotensin system inhibition prevents type 2 diabetes mellitus. Part 1. A meta-analysis of randomised clinical trials. Diabetes & Metabolism, 2004, 30(6): 487-496.
[8] P. C. Underwood, G. K. Adler. The renin angiotensin aldosterone system and insulin resistance in humans. Current Hypertension Reports, 2013, 15(1): 59-70.
[9] S. M. Bindom, C. P. Hans, H. Xia, et al. Angiotensin I-con- verting enzyme type 2 (ACE2) gene therapy improves glycemic control in diabetic mice. Diabetes, 2010, 59(10): 2540-2548.
[10] M. J. Niu, J. K. Yang, S. S. Lin, et al. Loss of angiotensin-con- verting enzyme 2 leads to impaired glucose homeostasis in mice. Endocrine, 2008, 34(1-3): 56-61.
[11] E. Fischer, C. Adolf, A. Pallauf, et al. Aldosterone excess impairs first phase insulin secretion in primary aldosteronism. The Journal of Clinical Endocrinology & Metabolism, 2013, 98(6): 2513-2520.
[12] J. M. Luther, P. Luo, M. T. Kreger, et al. Aldosterone decreases glucose-stimulated insulin secretion in vivo in mice and in murine islets. Diabetologia, 2011, 54(8): 2152-2163.
[13] D. W. Lambert, N. E. Clarke and A. J. Turner. Not just angiotensinases: New roles for the angiotensin-converting enzymes. Cellular and Molecular Life Sciences, 2010, 67(1): 89-98.
[14] M. Donoghue, F. Hsieh, E. Baronas, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) con- verts angiotensin I to angiotensin 1-9. Circulation Research, 2000, 87(5): E1-E9.
[15] R. A. Santos, A. J. Ferreira. Angiotensin-(1-7) and the renin-an- giotensin system. Current Opinion in Nephrology and Hyperten- sion, 2007, 16(2): 122-128.
[16] M. C. Chappell, D. W. Jacobsen and E. A. Tallant. Characterization of angiotensin II receptor subtypes in pancreatic acinar AR42J cells. Peptides, 1995, 16(4): 741-747.
[17] M. C. Chappell, A. Millsted, D. I. Diz, et al. Evidence for an intrinsic angiotensin system in the canine pancreas. Journal of Hypertension, 1991, 9(8): 751-759.
[18] P. S. Leung, M. C. Chappell. A local pancreatic renin-angio- tensin system: Endocrine and exocrine roles. The International Journal of Biochemistry & Cell Biology, 2003, 35(6): 838-846.
[19] C. Tikellis, P. J. Wookey, R. Candido, et al. Improved islet morphology after blockade of the rennin-angiotensin system in the ZDF rat. Diabetes, 2004, 53(4): 989-997.
[20] P. F. Wong, S. S. Lee and W. T. Cheung. Immunohistochemical colocalization of type II angiotensin receptors with somatostatin in rat pancreas. Regulatory Peptides, 2004, 117(3): 195-205.
[21] M. Tahmasebi, J. R. Puddefoot, E. R. Inwang, et al. The tissue renin-angiotensin system in human pancreas. Journal of Endocrinology, 1999, 161(2): 317-322.
[22] D. Batlle, S. M. Jose and M. Ye. ACE2 and diabetes: ACE of ACEs? Diabetes, 2010, 59(12): 2994-2996.
[23] P. S. Leung. The physiology of a local renin-angiotensin system in the pancreas. The Journal of Physiology, 2007, 580(Pt1): 31-37.
[24] L. Yuan, X. Li, G. L. Xu, et al. Effects of renin-angiotensin system blockade on islet function in diabetic rats. Journal of Endocrinological Investigation, 2010, 33(1): 13-19.
[25] Y. Marcus, G. Shefer and N. Stern. Adipose tissue renin-angio- tensin-aldosterone system (RAAS) and progression of insulin resistance. Molecular and Cellular Endocrinology, 2012.
[26] Y. Qi, H. Li, V. Shenoy, et al. Moderate cardiac-selective overexpression of angiotensin II type 2 receptor protects cardiac functions from ischaemic injury. Experimental Physiology, 2012, 97(1): 89-101.
[27] Q. Cheng, P. S. Leung. An update on the islet renin-angiotensin system. Peptides, 2011, 32(5): 1087-1095.
[28] P. F. Wong, S. S. Lee and W. T. Cheung. Immunohistochemical colocalization of type II angiotensin receptors with somatostatin in rat pancreas. Regulatory Peptides, 2004, 117(3): 195-205.
[29] P. S. Leung. Mechanisms of protective effects induced by blockade of the renin-angiotensin system: Novel role of the pancreatic islet angiotensin-generating system in Type 2 diabetes. Diabetic Medicine, 2007, 24(2): 110-116.
[30] P. O. Carlsson, C. Berne and L. Jansson. Angiotensin II and the endocrine pancreas: Effects on islet blood flow and insulin secretion in rats. Diabetologia, 1998, 41(2): 127-133.
[31] T. Lau, P. O. Carlsson and P. S. Leung. Evidence for a local angiotensin-generating system and dose-dependent inhibition of glucose-stimulated insulin release by angiotensin II in isolated pancreatic islets[J]. Diabetologia, 2004,47(2):240-248.
[32] K. Y. Chu, P. S. Leung. Angiotensin II Type 1 receptor antagonism mediates uncoupling protein 2-driven oxidative stress and ameliorates pancreatic islet beta-cell function in young Type 2 diabetic mice. Antioxidants & Redox Signaling, 2007, 9(7): 869- 878.
[33] A. Kuno, T. Yamada, K. Masuda, et al. Angiotensin-converting enzyme inhibitor attenuates pancreatic inflammation and fibrosis in male Wistar Bonn/Kobori rats. Gastroenterology, 2003, 124(4): 1010-1019.
[34] P. V. Ennezat, M. Berlowitz, E. H. Sonnenblick, et al. Therapeutic implications of escape from angiotensin-converting enzyme inhibition in patients with chronic heart failure. Current Cardiology Reports, 2000, 2(3): 258-262.
[35] A. H. van den Meiracker, I. T. V. A. Man, P. J. Admiraal, et al. Partial escape of angiotensin converting enzyme (ACE) inhibition during prolonged ACE inhibitor treatment: Does it exist and does it affect the antihypertensive response? Journal of Hypertension, 1992, 10(8): 803-812.
[36] J. Biollaz, H. R. Brunner, I. Gavras, et al. Antihypertensive therapy with MK 421: Angiotensin II-renin relationships to evaluate efficacy of converting enzyme blockade. Journal of Cardiovascular Pharmacology, 1982, 4(6): 966-972.
[37] W. J. Bommer. Use of angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker therapy to reduce cardiovascular events in high-risk patients: Part 1. Preventive Cardiology, 2008, 11(3): 148-154.
[38] B. K. Cole, S. R. Keller, R. Wu, et al. Valsartan protects pancreatic islets and adipose tissue from the inflammatory and metabolic consequences of a high-fat diet in mice. Hypertension, 2010, 55(3): 715-721.
[39] Z. Huang, L. Jansson and A. Sjoholm. Vasoactive drugs enhance pancreatic islet blood flow, augment insulin secretion and improve glucose tolerance in female rats. Clinical Science (London), 2007, 112(1): 69-76.
[40] R. Rodriguez, J. A. Viscarra, J. N. Minas, et al. Angiotensin re- ceptor blockade increases pancreatic insulin secretion and de- creases glucose intolerance during glucose supplementation in a model of metabolic syndrome. Endocrinology, 2012, 153(4): 1684-1695.
[41] Y. Saitoh, W. Hongwei, H. Ueno, et al. Candesartan attenuates fatty acid-induced oxidative stress and NAD(P)H oxidase activity in pancreatic beta-cells. Diabetes Research and Clinical Practice, 2010, 90(1): 54-59.
[42] Q. Cheng, P. K. Law, M. de Gasparo, et al. Combination of the dipeptidyl peptidase IV inhibitor LAF237 [(S)-1-[(3-hydro- xy-1-adamantyl)ammo]acetyl-2-cyanopyrrolidine] with the an- giotensin II type 1 receptor antagonist valsartan [N-(1-oxopen- tyl)-N-[[2'-(1H-tetrazol-5-yl)-[1,1'-biphenyl]-4-yl]methyl]-L-valine] enhances pancreatic islet morphology and function in a mouse model of type 2 diabetes. Journal of Pharmacology and Experimental Therapeutics, 2008, 327(3): 683-691.
[43] S. Bokhari, Z. Israelian, J. Schmidt, et al. Effects of angiotensin II type 1 receptor blockade on beta-cell function in humans. Diabetes Care, 2007, 30(1): 181.
[44] N. J. van der Zijl, C. C. Moors, G. H. Goossens, et al. Valsartan improves {beta}-cell function and insulin sensitivity in subjects with impaired glucose metabolism: a randomized controlled trial. Diabetes Care, 2011, 34(4): 845-851.
[45] M. E. Cooper, C. Tikellis and M. C. Thomas. Preventing diabetes in patients with hypertension: One more reason to block the renin-angiotensin system. Journal of Hypertension, 2006, 24(1): S57-S63.
[46] J. R. Sowers, L. Raij, I. Jialal, et al. Angiotensin receptor blo- cker/diuretic combination preserves insulin responses in obese hypertensives. Journal of Hypertension, 2010, 28(8): 1761-1769.
[47] M. R. Hayden, J. R. Sowers. Pancreatic renin-angiotensin-al- dosterone system in the cardiometabolic syndrome and type 2 diabetes mellitus. Journal of the CardioMetabolic Syndrome, 2008, 3(3): 129-131.
[48] S. B. Gurley, A. Allred, T. H. Le, et al. Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. Journal of Clinical Investigation, 2006, 116(8): 2218-2225.
[49] L. S. Zisman, G. E. Meixell, M. R. Bristow, et al. Angiotensin-(1-7) formation in the intact human heart: In vivo depen- dence on angiotensin II as substrate. Circulation, 2003, 108(14): 1679-1681.
[50] G. Paizis, C. Tikellis, M. E. Cooper, et al. Chronic liver injury in rats and humans upregulates the novel enzyme angiotensin con- verting enzyme 2. Gut, 2005, 54(12): 1790-1796.
[51] J. Selvaraj, S. Sathish, C. Mayilvanan, et al. Excess aldosterone- induced changes in insulin signaling molecules and glucose oxidation in gastrocnemius muscle of adult male rat. Molecular and Cellular Biochemistry, 2013, 372(1-2): 113-126.
[52] Y. Huan, S. Deloach, S. W. Keith, et al. Aldosterone and aldosterone: renin ratio associations with insulin resistance and blood pressure in African Americans. Journal of the American Society of Hypertension, 2012, 6(1): 56-65.
[53] S. J. Sherajee, Y. Fujita, K. Rafiq, et al. Aldosterone induces vascular insulin resistance by increasing insulin-like growth factor-1 receptor and hybrid receptor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32(2): 257-263.
[54] M. H. Weinberger, W. B. White, L. M. Ruilope, et al. Effects of eplerenone versus losartan in patients with low-renin hypertension. American Heart Journal, 2005, 150(3): 426-433.
[55] K. Swaminathan, J. Davies, J. George, et al. Spironolactone for poorly controlled hypertension in type 2 diabetes: Conflicting effects on blood pressure, endothelial function, glycaemic control and hormonal profiles. Diabetologia, 2008, 51(5): 762-768.
[56] Y. Arase, F. Suzuki, Y. Suzuki, et al. Losartan reduces the onset of type 2 diabetes in hypertensive Japanese patients with chronic hepatitis C. Journal of Medical Virology, 2009, 81(9): 1584- 1590.