攻击行为的大脑时空机制:ERP和fMRI研究进展
The Brain Mechanism of Aggression: Review on ERP and fMRI Study
DOI: 10.12677/AP.2013.36047, PDF, HTML, XML,  被引量 下载: 3,446  浏览: 12,629  科研立项经费支持
作者: 滕召军, 潘彦谷:西南大学心理学部,西南大学心理健康教育研究中心,重庆;刘衍玲:西南大学心理学部,西南大学心理健康教育研究中心,重庆;电子科技大学生命科学技术学院,神经信息教育部重点实验室,成都;尧德中:电子科技大学生命科学技术学院,神经信息教育部重点实验室,成都
关键词: 攻击行为ERPfMRIAggression; ERP; fMRI
摘要: 攻击行为在人类社会中非常普遍,社会心理学家把攻击行为定义为,个体蓄意给他人身体或心理带来某种伤害,并且知觉到这种伤害的行为(Anderson & Bushman, 2002)。利用ERPfMRI技术研究攻击行为的神经机制发现:1) 攻击行为的过程反应主要体现在早期诱发50 ms左右出现的听觉P50波,中期对错误刺激监测的错误相关负波(ERN),以及晚期P300波等ERP成分2) 攻击行为的神经基础涉及前额叶(PFC)、前扣带回(ACC)、杏仁核(Amygdala)和下丘脑(Hypothalamus)等大脑空间结构。整合这些研究可以发现,攻击行为的脑电反应过程可能是自下而上,而神经基础可能是是自上而下的加工过程。未来要进一步比较动物攻击行为和人类攻击行为的神经机制模型差异,整合ERPfMRI研究以及设计实验探测工具性攻击行为的神经机制。
Abstract: Human aggression is defined to any behavior directed toward another individual that is carried out with the proximate intent to cause harm (Anderson & Bushman, 2002). 1) Researches on recent decades show that the majority of event-related potentials (ERPs) associated with aggression contained P50 induced by auditory gating, Error Related Negativity (ERN) produced by the progress of error information and later period of P300; 2) By functional magnetic resonance imaging (fMRI) studies, the neural mechanism of aggression contained prefrontal cortex (PFC), anterior cingulate cortex (ACC), amygdala, hypothalamus and so on. The progresses of ERP response and neural mechanism of aggression were bottom-up and top to bottom. In the future direction, we should make a comparison on animal and human aggression neural mechanism, and we should make ERP and fMRI integrate to research human aggression. Then the neural mechanism of instrumental-controlled aggression should be explored by these methods.
文章引用:滕召军, 刘衍玲, 潘彦谷, 尧德中 (2013). 攻击行为的大脑时空机制:ERP和fMRI研究进展. 心理学进展, 3(6), 313-320. http://dx.doi.org/10.12677/AP.2013.36047

参考文献

[1] 尧德中(2003). 脑功能探测的电学理论与方法. 科学出版社.
[2] Alia-Klein, N., Goldstein, R. Z., Tomasi, D., Woicik, P. A., Moeller, S. J., Williams, B., & Volkow, N. D. (2009). Neural mechanisms of anger regulation as a function of genetic risk for violence. Emotion, 9, 385-396.
[3] Anderson, C. A., & Bushman, B. J. (2002). Human aggression. Annual Review of Psychology, 53, 27-51.
[4] Antonucci, A. S., Gansler, D. A., Tan, S., Bhadelia, R., Patz, S., & Fulwiler, C. (2006). Orbitofrontal correlates of aggression and impulsivity in psychiatric patients. Psychiatry Research: Neuroimaging, 147, 213-220.
[5] Boes, A. D., Tranel, D., Anderson, S. W., & Nopoulos, P. (2008). Right anterior cingulate: A neuroanatomical correlate of aggression and defiance in boys. Behavioral neuroscience, 122, 677-684.
[6] Bosch, O. J., & Neumann, I. D. (2010). Vasopressin released within the central amygdala promotes maternal aggression. European Journal of Neuroscience, 31, 883-891.
[7] Brazil, I. A., de Bruijn, E. R., Bulten, B. H., von Borries, A. K. L., van Lankveld, J. J., Buitelaar, J. K., & Verkes, R. J. (2009). Early and late components of error monitoring in violent offenders with psychopathy. Biological Psychiatry, 65, 137-143.
[8] Carré, J. M., McCormick, C. M., & Hariri, A. R. (2011). The social neuroendocrinology of human aggression. Psychoneuroendocrinology, 36, 935-944.
[9] Coccaro, E. F., McCloskey, M. S., Fitzgerald, D. A., & Phan, K. L. (2007). Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biological psychiatry, 62, 168-178.
[10] Davidson, R. J., Putnam, K. M., & Larson, C. L. (2000). Dysfunction in the neural circuitry of emotion regulation—A possible prelude to violence. Science, 289, 591-594.
[11] Denson, T. F. (2011). A social neuroscience perspective on the neurobiological bases of aggression. Human aggression and violence: Causes, manifestations, and consequences, Herzilya series on personality and social psychology, 105-120.
[12] Denson, T. F., Pedersen, W. C., Ronquillo, J., & Nandy, A. S. (2009). The angry brain: Neural correlates of anger, angry rumination, and aggressive personality. Journal of Cognitive Neuroscience, 21, 734-744.
[13] Ducharme, S., Hudziak, J. J., Botteron, K. N., Ganjavi, H., Lepage, C., Collins, D. L., & Karama, S. (2011). Right anterior cingulate cortical thickness and bilateral striatal volume correlate with child behavior checklist aggressive behavior scores in healthy children. Biological psychiatry, 70, 283-290.
[14] Fanning, J. R. (2011). An electrophysiological investigation of the cognitive processes underlying provoked aggression in humans. Dissertations. Paper 262. http://aquila.usm.edu/theses_dissertations/262
[15] Fresán, A., Apiquian, R., García-Anaya, M., de la Fuente-Sandoval, C., Nicolini, H., & Graff-Guerrero, A. (2007). The P50 auditory evoked potential in violent and non-violent patients with schizophrenia. Schizophrenia Research, 97, 128-136.
[16] Gansler, D. A., Lee, A. K., Emerton, B. C., D’Amato, C., Bhadelia, R., Jerram, M., & Fulwiler, C. (2011). Prefrontal regional correlates of self-control in male psychiatric patients: Impulsivity facets and aggression. Psychiatry Research: Neuroimaging, 191, 16-23.
[17] Gao, Y., & Raine, A. (2009). P3 event-related potential impairments in antisocial and psychopathic individuals: A meta-analysis. Biological Psychology, 82, 199-210.
[18] Gavita, O. A., Capris, D., Bolno, J., & David, D. (2012). Anterior cingulate cortex findings in child disruptive behavior disorders. A meta-analysis. Aggression and Violent Behavior, 17, 507-513.
[19] Ghisolfi, E. S., Margis, R., Becker, J., Zanardo, A. P., Strimitzer, I. M., & Lara, D. R. (2004). Impaired P50 sensory gating in post-traumatic stress disorder secondary to urban violence. International Journal of Psychophysiology, 51, 209-214.
[20] Halász, J., Tóth, M., Kalló, I., Liposits, Z., & Haller, J. (2006). The activation of prefrontal cortical neurons in ag-gression—A double labeling study. Behavioural Brain Research, 175, 166-175.
[21] Haller, J. (2012). The neurobiology of abnormal manifestations of aggression-a review of hypothalamic mechanisms in cats, rodents, and humans. Brain Research Bulletin, 93, 97-109.
[22] Hoptman, M. J., D’Angelo, D., Catalano, D., Mauro, C. J., Shehzad, Z. E., Kelly, A. C., & Milham, M. P. (2010). Amygdalofrontal functional disconnectivity and aggression in schizophrenia. Schizophrenia Bulletin, 36, 1020-1028.
[23] Hummer, T. A., Wang, Y., Kronenberger, W. G., Mosier, K. M., Kalnin, A. J., Dunn, D. W., & Mathews, V. P. (2010). Short-term violent video game play by adolescents alters prefrontal activity during cognitive inhibition. Media Psychology, 13, 136-154.
[24] Krämer, U. M., Kopyciok, R. P., Richter, S., Rodriguez-Fornells, A., & Münte, T. F. (2011). The role of executive functions in the control of aggressive behavior. Frontiers in Psychology, 2, 1-10.
[25] Kuhn, J., Lenartz, D., Mai, J. K., Huff, W., Klosterkoetter, J., & Sturm, V. (2008). Disappearance of self-aggressive behavior in a brain-injured patient after deep brain stimulation of the hypothalamus: technical case report. Neurosurgery, 62(5), E1182.
[26] Lijffijt, M., Cox, B., Acas, M. D., Lane, S. D., Moeller, F. G., & Swann, A. C. (2012). Differential relationships of impulsivity or antisocial symptoms on P50, N100, or P200 auditory sensory gating in controls and antisocial personality disorder. Journal of Psychiatric Research, 46, 743-750.
[27] Lin, D., Boyle, M. P., Dollar, P., Lee, H., Lein, E. S., Perona, P., & Anderson, D. J. (2011). Functional identification of an aggression locus in the mouse hypothalamus. Nature, 470, 221-226.
[28] Mathews, V. P., Kronenberger, W. G., Wang, Y., Lurito, J. T., Lowe, M. J., & Dunn, D. W. (2005). Media violence exposure and frontal lobe activation measured by functional magnetic resonance imaging in aggressive and nonaggressive adolescents. Journal of Computer Assisted Tomography, 29, 287-292.
[29] Mehta, P. H., & Beer, J. (2010). Neural mechanisms of the testosterone-aggression relation: The role of orbitofrontal cortex. Journal of Cognitive Neuroscience, 22, 2357-2368.
[30] Mehta, P. H., Goetz, S. M., & Carré, J. M. (2013). Genetic, hormonal, and neural underpinnings of human aggressive behavior. In: Franks, D. D., & Turner, J. H., Handbook of Neurosociology (pp. 47-65). Berlin: Springer.
[31] Olvet, D. M., & Hajcak, G. (2008). The error-related negativity (ERN) and psychopathology: Toward an endophenotype. Clinical Psychology Review, 28, 1343-1354.
[32] Passamonti, L., Crockett, M. J., Apergis-Schoute, A. M., Clark, L., Rowe, J. B., Calder, A. J., & Robbins, T. W. (2012). Effects of acute tryptophan depletion on prefrontal-amygdala connectivity while viewing facial signals of aggression. Biological Psychiatry, 71, 36-43.
[33] Potegal, G. S. M. (2010). International handbook of anger. Berlin: Springer.
[34] Raine, A., Meloy, J. R., Bihrle, S., Stoddard, J., LaCasse, L., & Buchsbaum, M. S. (1998). Reduced prefrontal and increased subcortical brain functioning assessed using positron emission tomography in predatory and affective murderers. Behavioral sciences & the Law, 16, 319-332.
[35] Rosell, D. R., Thompson, J. L., Slifstein, M., Xu, X., Frankle, W. G., New, A. S., & Siever, L. J. (2010). Increased serotonin 2A receptor availability in the orbitofrontal cortex of physically aggressive personality disordered patients. Biological Psychiatry, 67, 1154-1162.
[36] Russo, P. M., De Pascalis, V., Varriale, V., & Barratt, E. S. (2008). Impulsivity, intelligence and P300 wave: An empirical study. International Journal of Psychophysiology, 69, 112-118.
[37] Siever, L. (2008). Neurobiology of aggression and violence. American Journal of Psychiatry, 165, 429-442.
[38] Strenziok, M., Krueger, F., Heinecke, A., Lenroot, R. K., Knutson, K. M., van der Meer, E., & Grafman, J. (2011). Developmental effects of aggressive behavior in male adolescents assessed with structural and functional brain imaging. Social Cognitive and Affective Neuroscience, 6, 2-11.
[39] Suzuki, H., Han, S. D., & Lucas, L. R. (2010). Increased 5-HT(1B) receptor density in the basolateral amygdala of passive observer rats exposed to aggression. Brain Research Bulletin, 83, 38-43.
[40] Van Goozen, S. H., Fairchild, G., Snoek, H., & Harold, G. T. (2007). The evidence for a neurobiological model of childhood antisocial behavior. Psychological Bulletin, 133, 149-182.
[41] van Meel, C. S., Heslenfeld, D. J., Oosterlaan, J., & Sergeant, J. A. (2007). Adaptive control deficits in attention-deficit/hyperactivity disorder (ADHD): The role of error processing. Psychiatry Research, 151, 211-220.
[42] Venables, N. C., Patrick, C. J., Hall, J. R., & Bernat, E. M. (2011). Clarifying relations between dispositional aggression and brain potential response: Overlapping and distinct contributions of impulsivity and stress reactivity. Biological Psychology, 86, 279-288.
[43] Vitiello, B., & Stoff, D. M. (1997). Subtypes of aggression and their relevance to child psychiatry. Journal of the American Academy of Child & Adolescent Psychiatry, 36, 307-315.
[44] Wan, L., Friedman, B. H., Boutros, N. N., & Crawford, H. J. (2008). P50 sensory gating and attentional performance. International Journal of Psychophysiology, 67, 91-100.
[45] Wang, Y., Mathews, V. P., Kalnin, A. J., Mosier, K. M., Dunn, D. W., Saykin, A. J., & Kronenberger, W. G. (2009). Short term exposure to a violent video game induces changes in frontolimbic circuitry in adolescents. Brain Imaging and Behavior, 3, 38-50.
[46] Wiswede, D., Taubner, S., Münte, T. F., Roth, G., Strüber, D., Wahl, K., & Krämer, U. M. (2011). Neurophysiological correlates of laboratory-induced aggression in young men with and without a history of violence. PloS One, 6, Article ID: e22599.