练习对大脑功能变化的影响及其意义
Practice Effect on the Changes of Brain Function and Its Implications
DOI: 10.12677/AP.2013.36051, PDF, HTML, XML, 下载: 3,224  浏览: 11,613 
作者: 杜 萍, 张 丽:西南大学心理学部,认知与人格教育部重点实验室,重庆;陈雪梅:西南大学心理学部,认知与人格教育部重点实验室,重庆;奕阳教育研究院,北京
关键词: 大脑功能可塑性练习激活减少激活增加激活重组Functional Plasticity; Practice; Activation Decreases; Activation Increases; Reorganization of Activation
摘要: 近年来,大脑可塑性逐渐成为认知神经科学的一个重要研究方向。大脑可塑性分为结构可塑和功能可塑。本文介绍了练习引起的大脑功能激活的变化模式,分别是激活增加、激活减少以及激活的功能性重组,并分析了其影响因素,最后主要探讨了练习引起的大脑可塑性在临床上的治疗意义和教育实践意义。
Abstract:  In recent years, brain plasticity in cognitive neuroscience has become an important research direction. There are structural and functional plasticity. This paper introduces patterns of experience-induced functional plasticity in brain and their determining factors. There are three patterns, including activation decreases, activation increases and reorganization of activation. Finally, the clinical and educational significance in brain plasticity after practice is mainly concluded.
文章引用:杜萍, 陈雪梅, 张丽 (2013). 练习对大脑功能变化的影响及其意义. 心理学进展, 3(6), 340-345. http://dx.doi.org/10.12677/AP.2013.36051

参考文献

[1] 郭瑞芳, 彭聃龄(2005). 脑可塑性研究综述. 心理科学, 28期, 409- 411.
[2] 胡谊, 桑标(2010). 教育神经科学:探究人类认知与学习的一条整合式途径. 心理科学, 33期, 514-520.
[3] 罗非, 罗劲, 吴一兵, 丁之光, 李佳音, 王锦琰, 郭建友(2009). 脑功能可塑性与灾后心理功能康复. 心理科学进展, 17期, 594-601.
[4] 王亚鹏, 董奇(2007). 脑的可塑性研究:现状与进展. 北京师范大学学报(社会科学版), 201期, 39-45.
[5] 郑秀丽, 敖纯利, 沈抒, 谢欲晓, 尹文刚(2007). 大脑高级皮质功能可塑性的认知神经心理学研究进展. 中国康复医学杂志, 22期, 1044-1046.
[6] Andreasen, N. C., O’Leary, D. S., Cizadlo, T., Arndt, S., Rezai, K., Watkins, G. L., et al. (1995). PET studies of memory: Novel versus practiced free recall of word lists. Neuroimage, 2, 284-305.
[7] Beauchamp, M. H., Dagher, A., Aston, J. A., & Doyon, J. (2003). Dynamic functional changes associated with cognitive skill learning of an adapted version of the Tower of London task. Neuroimage, 20, 1649-1660.
[8] Bernstein, L. J., Beig, S., Siegenthaler, A. L., & Grady, C. L. (2002). The effect of encoding strategy on the neural correlates of memory for faces. Neuropsychologia, 40, 86-98.
[9] Chein, J. M., & Schneider, W. (2005). Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain- general control network for learning. Cognitive Brain Research, 25, 607-623.
[10] Cools, R., & Robbins, T. W. (2004). Chemistry of the adaptive mind. Philosophical Transaction, Series A, Mathematical, Physical, and Engineering Sciences, 362, 2871-2888.
[11] Dahlin, E., Bäckman, L., Neely, A. S., & Nyberg, L. (2009). Training of the executive component of working memory: Subcortical areas mediate transfer effects. Restorative Neurology and Neuroscience, 10, 405-419.
[12] Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284, 970-974.
[13] De Smedt, B., Ansari, D., Grabner, R. H., Hannula, M. M., Schneider, M., & Verschaffel, L. (2010). Cognitive neuroscience meets mathe- matics education. Educational Research Review, 5, 97-105.
[14] Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270, 305-307.
[15] Erickson, K. I., Colcombe, S. J., Wadhwa, R., Bherer, L., Peterson, M. S., Scalf, P. E., et al. (2007). Training-innduced functional activation changes in dual-task processing: An fMRI study. Cerebral Cortex, 17, 192-204.
[16] Fincham, J. M., & Anderson, J. R. (2006). Distinct roles of the anterior cingulate and prefrontal cortex in the acquisition and performance of a cognitive skill. The National Academy of Sciences of the USA, 103, 12941-12946.
[17] Frutiger, S. A., Strother, S. C., Anderson, J. R., Sidtis, J. J., Arnold, J. B., & Rottenberg, D. A. (2000). Multivariate predictive relationship between kinematic and functional activation patterns in a PET study of visuomotor learning. Neuroimage, 12, 515-527.
[18] Garavan, H., Kelley, D., Rosen, A., Rao, S. M., & Stein, E. A. (2000). Practice-related functional activation changes in a working memory task. Microscopy Research and Technique, 51, 54-63.
[19] Glabus, M. F., Horwitz, B., Holt, J. L., Kohn, P. D., Gerton, B. K., Callicott, J. H., Meyer-Lindenberg, A., & Berman, K. F. (2003). In- terindividual differences in functional interactions among prefrontal, parietal and parahippocampal regions during working memory. Cerebral Cortex, 13, 1352-1361.
[20] Goldstein, R. Z., Tomasi, D., Alia-Klein, N., Zhang, L., Telang, F., & Volkowc, N. D. (2007). The effect of practice on a sustained atten- tion task in cocaine abusers. NeuroImage, 35, 194-206.
[21] Hempel, A., Giesel, F. L., Caraballo, N. M., Amann, M., Meyer, H., Wustenberg, T., et al. (2004). Plasticity of cortical activation related to working memory during training. American Journal of Psychiatry, 161, 745-747.
[22] Hillary, F. G. (2008). Neuroimaging of working memory dysfunction and the dilemma with brain reorganization hypotheses. Journal of the International Neuropsychological Society, 14, 526-534.
[23] Histed, M. H., Pasupathy, A., & Miller, E. K. (2009). Learning sub- strates in the primate prefrontal cortex and striatum: Sustained ac- tivity related to successful actions. Neuron, 63, 244-253.
[24] Hubbard, I. J., Parsons, M. W., Neilson, C., & Carey, L. M. (2009). Task-specific training: Evidence for and translation to clinical prac- tice. Occupational Therapy International, 16, 175-189.
[25] Hund-Georgiadis, M., & von Cramon, D. Y. (1999). Motor-learning- related changes in piano players and non-musicians revealed by func- tional magnetic-resonance signals. Experimental Brain Research, 125, 417-425.
[26] Ikegami, T., & Taga, G. (2008). Decrease in cortical activation during learning of a multi-joint discrete motor task. Experimental Brain Research, 191, 221-236.
[27] Jansma, J. M., Ramsey, N. F., Slagter, H. A., & Kahn, R. S. (2001). Functional anatomical correlates of controlled and automatic proc- essing. Journal of Cognitive Neuroscience, 13, 730-743.
[28] Karmiloff-Smith, A. (1992). Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA: MIT Press.
[29] Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Unger- leider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377, 155-158.
[30] Kassubek, J., Schmidtke, K., Kimmig, H., Lucking, C. H., & Greenlee, M. W. (2001). Changes in cortical activation during mirror reading before and after training: An fMRI study of procedural learning. Cognitive Brain Research, 10, 207-217.
[31] Kaufmann, L., Vogel, S. E., Wood, G., Kremser, C., Schocke, M., Zimmerhackl, L.-B., & Koten, J. W. (2008). A developmental fMRI study of nonsymbolic numerical and spatial processing. Cortex, 44, 376-385.
[32] Kelly, A. M., & Garavan, H. (2005). Human functional neuroimaging of brain changes associated with practice. Cerebral Cortex, 15, 1089-1102.
[33] Kelly, C., Foxe, J. J., & Garavan, H. (2006). Patterns of normal human brain plasticity after practice and their implications for neuroreha- bilitation. Archives of Physical Medicine and Rehabilitation, 87, 20- 29.
[34] Kim, Y. H., Yoo, W. K., Ko, M. H., Park, C. H., Kim, S. T., & Na, D. L. (2009). Plasticity of the attentional network after brain injury and cognitive rehabilitation. Neurorehabilitation and Neural Repair, 23, 468-477.
[35] Kleber, B., Veit, R., Birbaumer, N., Gruzelier, J., & Lotze, M. (2010). The brain of opera singers: Expe-rience-dependent changes in func- tional activation. Cerebral Cortex, 20, 1144-1152.
[36] Lustig, C., Shah, P., Seidler, R., & Reuter-Lorenz, P. A. (2009). Aging, training, and the brain: A review and future directions. Neuropsy- chology Review, 19, 504-522.
[37] MacIver, K., Lloyd, D. M., Kelly, S., Roberts, N., & Nurmikko, T. (2008). Phantom limb pain, cortical reorganization and the therapeu- tic effect of mental imagery. Brain, 131, 2181-2191.
[38] Munte, T. F., Altenmuller, E., & Jancke, L. (2002). The musician’s brain as a model of neuroplasticity. Nature Reviews Neuroscience, 3, 473-478.
[39] Neubauer, A. C., Grabner, R. H., Freudenthaler, H. H., Beckmann, J. F., & Guthke, J. (2004). Intelligence and individual differences in be- coming neurally efficient. Acta psychologica, 116, 55-74.
[40] Nudo, R. J. (1997). Remodeling of motor representations after stork: Implications for recover from brain damage. Molecular Psychiatry, 2, 188-191.
[41] Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased pre- frontal and parietal activity after training of working memory. Na- ture Neuroscience, 7, 75-79.
[42] Owen, A. M., Hampshire, A., Grahn, J. A. Stenton, R., Dajani, S., Burns, A. S., Howard, R. J., & Ballard, C. G. (2010). Putting brain training to the test. Nature, 465, 775-778.
[43] Petersen, S. E., van Mier, H., Fiez, J. A., & Raichle, M. E. (1998). The effects of practice on the functional anatomy of task performance. Proceedings of the National Academy of Sciences, 95, 853-860.
[44] Petersson, K. M., Elfgren, C., & Ingvar, M. (1999). Dynamic changes in the functional anatomy of the human brain during recall of ab- stract designs related to practice. Neuropsychologia, 37, 567-587.
[45] Poldrack, R. A. (2000). Imaging brain plasticity: Conceptual and methodological issues-a theoretical review. Neuroimage, 12, 1-13.
[46] Poldrack, R. A., & Gabrieli, J. D. (2001). Characterizing the neural mechanisms of skill learning and repetition priming: evidence from mirror reading. Brain, 124, 67-82.
[47] Sayala, S., Sala, J. B., & Courtney, S. M. (2006). Increased neural efficiency with repeated performance of a working memory task is information-type dependent. Cerebral Cortex, 16, 609-617.
[48] Saur, D., Lange, R., Baumgaertner, A., Schraknepper, V., Willmes, K., Rijntjes, M., & Weiller, C. (2006). Dynamics of language reorganization after stroke. Brain, 129, 1371-1384.
[49] Seidler, R. D., Purushotham, A., Kim, S. G., Ugurbil, K., Willingham, D., & Ashe, J. (2002). Cerebellum activation associated with performance change but not motor learning. Science, 296, 2043-2046.
[50] Snyder, P. J. (2010). http: //www.nature.com/news/2010/100420/full/4641111a.html
[51] Tang, Y. Y., Ma, Y., Wang, J., Fan, Y., Feng, S., Lu, Q., et al. (2007). Short-term meditation training improves attention and self-regula- tion. Proceedings of the National Academy of Sciences, 104, 17152-17156.
[52] Uoyd, D. (2000). Virtual lesions and the not-so-modular brain. Journal of the International Neuropsychological Society, 6, 62-67.
[53] van Raalten, T. R., Ramsey, N. F., Duyn, J., Jansma, J. M. (2008). Practice induces function-specific changes in brain activity. PLoS ONE, 3, Article ID: e3270.
[54] Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., & Tzourio- Mazoyer, N. (2001). Neural correlates of simple and complex mental calculation. NeuroImage, 13, 314-327.