APP  >> Vol. 3 No. 9 (November 2013)

    介观LC电路在辐射场作用下约化密度方程的推导
    The Derivation of Reduced Density Equation of Mesoscopic LC Circuit in a Thermal Radiation Field

  • 全文下载: PDF(216KB) HTML    PP.167-170   DOI: 10.12677/APP.2013.39031  
  • 下载量: 1,946  浏览量: 5,462  

作者:  

夏小建:泉州师范学院物理与信息工程学院,泉州

关键词:
介观LC电路辐射场约化密度方程Mesoscopic LC Circuit; The Radiation Field; Equation of Reduced Density

摘要:

介观LC电路不可避免会处于辐射场中,把辐射场看成是由无穷多谐振子组成的,选择介观LC电路为研究对象。本文从介观LC电路与辐射场相互作用的哈密顿量出发,把辐射场看成库,通过对库求迹,推导了介观LC电路在辐射场作用下的密度方程。

Quantum LC circuit locates inevitably in radiation field; the thermal radiation field is a reservoir which is described by infinite harmonic oscillators, and quantum LC circuit is a system to be investigated. From the interaction between mesoscopic LC circuit and radiation field, the radiation is reservoir. We trace out the reservoir and deduce the equation of density.

文章引用:
夏小建. 介观LC电路在辐射场作用下约化密度方程的推导[J]. 应用物理, 2013, 3(9): 167-170. http://dx.doi.org/10.12677/APP.2013.39031

参考文献

[1] Louisell, W.H. (1973) Quantum statistical properties of radia- tion. John Wiley, New York.
[2] Cheng, B., Li, Y.Q., et al. (1997) Quantum effects of charge in the mesoscopic circuit. Acta Physica Sinica, 46, 131-133.
[3] Cui, Y.S. (1998) Quantum fluctuations of voltage and current in mesoscopic LC circuit. Acta Photonica Sinica, 27, 517-520.
[4] Ji, Y.H., Rao, J.P., et al. (2002) Quantum tunneling effect in the mesoscopic LC circuit. Acta Physica Sinica, 51, 395-398.
[5] Ji, Y.H., Luo, H.M., et al. (2004) Preparation of schrodinger cat state via a mesoscopic LC circuit. Acta Physica Sinica, 53, 2534-2538.
[6] Xia, X.J. (2009) Evolution of quantum state in the mesoscopic LC circuit driven by a time dependent source. 26, 694-697.
[7] Zhou, X.F. (2007) Evolution of quantum state in the mesoscopic LC circuit driven by time dependent source. Chinese Journal of Quantum Electronics, 24, 600-604.
[8] Zhang, D.-Y., Guo, P. and Gao, F. (2007) Fidelity of two-level atoms’ quantum states in a strong thermal radiation field. Acta Physica Sinica, 56, 1906-1910.
[9] Tan, W.H. (2008) An introduction to quantum optics. Science Publication, Beijing.
[10] Bao, J.D. and Zhou, Y.Z. (2005) Anomalous dissipation: Strong non-Markovian effect and its dynamical origin. Physical Review E, 71, 010102.
[11] Bai, Z.W. and Bao, J.D. (2005) Classic and quantum diffusion in the presence of veloci-ty-dependent coupling. Physical Review E, 72, 061105.
[12] Orszag, M. (2007) Quantum optics. Science Publication, Beijing.