期刊菜单

Alternating Segment C-N Algorithm for Black-Scholes Equation with Dividend Paying

Abstract: Black-Scholes equation is an important model in option pricing theory of financial mathematics, which is very practical in the application of numerical computation. This paper constructs a kind of parallel alternating segment Crank-Nicolson (ASC-N) scheme for solving the payment of dividend Black-Scholes equation. Secondly, it gives the existence and uniqueness of solution, stability and convergence analysis of the scheme. The theoretical analysis and numerical examples demonstrate that ASC-N scheme has same computational accuracy with C-N scheme’s, but its computational efficiency (computational time) can save nearly 40% compared with C-N scheme. Numerical experiment verifies the theoretical analysis, and it shows that ASC-N scheme is effective for solving Black-Scholes equation with dividend paying.

 [1] Kwork, Y.K. (2011) Mathematical models of financial derivatives. The World Book Publishing Company, Beijing. [2] 姜礼尚 (2008) 期权定价的数学模型和方法(第2版).高等教育出版社, 北京. [3] 赵胜民 (2008) 衍生金融工具定价.中国财政经济出版社, 北京. [4] Ballester, C., Company, R. and Jodar, L. (2008) An efficient method for option pricing with discrete dividend payment. Computers and Mathe- matics with Applications, 56, 822-835. [5] Company, R., Navarro, E., Pintos, J.R. et al. (2008) Numerical solution of linear and nonlinear Black-Scholes option pricing equations. Com- puters and Mathematics with Applications, 56, 813-821. [6] Yang, X.Z., Liu, Y.G. and Wang, G.H. (2007) A study on a new kind of universal difference schemes for solving Black-Scholes equation. International Journal of Information and Systems Sciences, 3, 251-260. [7] 唐耀宗, 金朝嵩 (2006) 有红利美式看跌期权定价的Crank-Nicolson有限差分法. 经济数学, 4, 349-352. [8] 吴立飞, 杨晓忠 (2011) 支付红利下Black-Scholes方程的显隐和隐显差分格式解法. 中国科技论文在线精品论文, 13, 1207-1212. [9] Evans, D.J. and Sahimi, M.S. (1989) The numerical solution of Burgers’ equations by the alternating group explicit (AGE) method. Interna- tional Journal of Computer Mathematics, 29, 39-64. [10] 张宝琳 等 (1999) 数值并行计算原理与方法. 国防工业出版社, 北京. [11] 陆金甫, 张宝琳, 徐涛 (1998) 求解对流-扩散方程的交替分段显–隐式方法. 数值计算与计算机应用, 3, 161-167. [12] 王文洽 (2002) 对流–扩散方程的一类交替分组方法. 高等学校计算数学学报, 4, 289-297. [13] 张锁春 (2010) 抛物型方程定解问题的有限差分数值计算. 科学出版社, 北京.