数控加工中3D表面形貌数字图像处理技术
3D Surface Topography Analysis Using Image Processing Technology in NC
DOI: 10.12677/MET.2013.24028, PDF, 下载: 3,166  浏览: 9,724  科研立项经费支持
作者: 陈慧群:深圳信息职业技术学院,深圳
关键词: 表面形貌图像处理MATLABSurface Topography; Image Processing; MATLAB
摘要: 在数控加工中,加工表面的几何形貌特性在很大程度上影响着它的许多技术性能和使用功能。开展对加工表面形貌的研究是表面科学中重要的研究课题之一。研究表明,工程表面具有随机性、无序性、自相似性、自仿射性和多尺度性等分形特性。表面形貌影响光学元件的机械性能、物理性能、成品率;在特定应用场合下,通过检测光学元件表面三维微观形貌来检测光学元件的加工质量。将工件表面置于光学显微镜焦面上观测,如观测到工件表面某处存在明显缺陷,通过光学显微镜上下数次微移动,对工件表面该处采集多幅对焦图像并进行图像处理,根据处理结果判别工件是否符合加工要求。文中提出了一种基于MATLAB2012高级语言编写的图像处理软件,实现对数幅对焦图像进行分析处理进而拟合出表面微观形貌的三维图形。
Abstract: Topography of machined surface affects many of workpiece’s technical performance and function to a large degree in NC machining. Surface topography is one of the important research topics in surface science. Studies show that machined surface has some fractal characteristics such as randomness, disorder, self-similarity, self-affine and multiscale. Surface topography influences the mechanical properties, physical properties and the rate of finished products. Under certain situations, processing quality of optical elements is detected by detecting 3D micro topography of optical surface. The surface of the workpiece is observed by placing on the focal plane of optical microscope. If there are obvious defects on the workpiece surface, several focus images from this workpiece surface are acquired and processed by moving the optical microscope up and down several times. According to the result of image processing, we judge whether a workpiece is conformed to machining requirements. An image processing software based on MATLAB2012 language is proposed in this paper, which achieves processing and analysis for several focus images, then fitting the 3D surface topography.

文章引用:陈慧群. 数控加工中3D表面形貌数字图像处理技术[J]. 机械工程与技术, 2013, 2(4): 146-150. http://dx.doi.org/10.12677/MET.2013.24028

参考文献

[1] 黄昆涛, 房丰洲, 宫虎 (2013) 超精密车削表面微观形貌对光学特性的影响. 光学精密工程, 1, 101-107.
[2] Qiao, G., Dong, G. and Zhou, M. (2013) Simulation and assessment of diamond mill grinding wheel topography. The International Journal of Advanced Manufacturing Technology, 68, 2085-2093.
[3] Liu, Z., Jeong, Y. and Menq, C.H. (2013) Calibration of measurement sensitivities of multiple microcantilever dynamic modes in atomic force microscopy using a contact detection method. Review of Scientific Instruments, 84, Article ID: 023703.
[4] 刘海, 李烨, 李妍臻 (2013) 基于图像处理的PCB自动检测系统的设计与研究. 电子世界, 4, 114-117.
[5] 翟永平, 刘云辉, 周东翔 等 (2012) 稀疏图像内容情况下显微镜自动聚焦算法. 软件学报, 5, 1281-1294.
[6] Peng, F., Wu, J., Fang, Z., et al. (2013) Modeling and controlling of surface micro-topography feature in micro-ball-end milling. The International Journal of Advanced Manufacturing Technology, 67, 2657-2670.
[7] 贾慧贤, 刘鸿宇 (2013) MATLAB和VC环境下图像处理效果比较. 科技信息, 8, 176-178.
[8] 李月洁 (2012) 基于纹理和灰度差分相结合的运动检测. 计算机与数字工程, 11, 146-164.
[9] 方以, 郑崇勋, 闫相国 (2005) 显微镜自动聚焦算法的研究. 仪器仪表学报, 光学技术, 12, 1275-1277.
[10] 彭博栋, 魏福利 (2008) VC6.0与MATLAB7.x混合编程方法研究. 计算机与数字工程, 9, 174-178.