JSTA  >> Vol. 2 No. 1 (January 2014)

    Water Quality Monitoring System for the Overall Architecture and Network Design

  • 全文下载: PDF(1006KB) HTML    PP.1-4   DOI: 10.12677/JSTA.2014.21001  
  • 下载量: 1,909  浏览量: 8,401   科研立项经费支持



在线式物联网水质监测 Online; Internet of Things; Water Quality Monitoring



With the development of society, people pay more attention to environmental protection. How to intelligently monitor and control the environment has important research significance. Water quality monitoring system architecture and network design, first designed underwater acoustic communication and network data acquisition node, then added data acquisition nodes in each region (water), which used ZigBee system for automatic networking and data collection, by GPRS are passed to the server.

胡云冰, 牟向宇. 水质监测系统整体架构及网络设计[J]. 传感器技术与应用, 2014, 2(1): 1-4. http://dx.doi.org/10.12677/JSTA.2014.21001


[1] Akyildiz, I.F., Pompili, D. and Melodia, T. (2006) State of the art in protocol research for under water acoustic sensor networks. Proceedings of the 1st ACM International Workshop on Underwater Networks, Los Angeles, 25 September 2006, 7-16.
[2] Rice, J. and Green, D. (2008) Under water acoustic communications and networks for the US Navy’s Sea web program. Proceedings of the 2nd International Conference on Sensor Technologies and Applications, Cap Esterel, 25-31 August 2008, 715-722.
[3] Vasilescu, I., Kotay, K., Rus, D., et al. (2005) Data collection, storage, and retrieval with an underwater sensor network. Proceedings of the 3rd ACM Conference on Embedded Networked Sensor Systems (SenSys), Los Angeles, November 2005, 154165.
[4] Ingelrest, F. and Barrenetxea, G. (2010) Sensor scope: Application-specific sensor network for environmental monitoring. ACM Transactions on Sensor Networks, 4, 397-408.