流体动力学  >> Vol. 1 No. 4 (December 2013)

大型风力机翼型静态气动性能的数值模拟
Numerical Simulation of Aerodynamic Performance for Large Wind Turbine

DOI: 10.12677/IJFD.2013.14008, PDF, HTML, 下载: 2,488  浏览: 9,202  科研立项经费支持

作者: 干雨新:南京航空航天大学,航空宇航学院,南京

关键词: 风力机翼型静态气动性能数值模拟Wind Turbine; Airfoil; Static Aerodynamic Performance; Numerical Simulation

摘要: 本文对S809翼型的静态气动性能用CFD方法进行了数值模拟和分析,在计算过程中,使用了4种湍流模型对S809翼型进行了全湍流模拟,发现SST k-ω湍流模型的模拟效果与实验结果最为接近。但是大迎角状态下,S-A模型和k-ε模型预测的气流分离点较实验值靠后,导致升力显著高于实验值。另外,k-ε湍流模型算得的升力系数和k-ω湍流模型算得的阻力系数,与实验值的误差都比其他湍流模型大很多。之后又比较了SST k-ω湍流模型模拟的翼型几个状态下的表面压力分布和流场结构,研究了翼型静态失速下的气动性能。模拟结果显示,翼型边界层流动发生分离后,分离点在翼型吸力面上,且随着攻角的增大,分离点向前缘移动,直到整个翼型吸力面的边界层都发生了分离。当攻角足够大时,分离尾迹涡又重新附着在翼型壁面上,形成二次涡。
Abstract: In this paper, the writer uses the CFD method to numerically simulate the S809 airfoil which is specially used for large wind turbine and analyzes its static aerodynamic performance. In the calculation process, the writer uses Spalart-Allmaras turbulence model, k-ω turbulence model, k-ω turbulence model and SST k-ω turbulence model to make the fully turbulent simulation for S809 airfoil. It is found that the simulation result of the SST k-ω turbulence model is closest to the result of the experiment. Because the flow separation points predicted by the S-A and k-ω models are below the experiment result when the airfoil is at a high angle of attack, it will lead to the result that the lift force is significantly higher than the experimental values. In addition, the lift coefficient which is calculated by the k-ω turbulence model has larger error than other turbulence models, and the drag coefficient which is calculated by the k-ω turbulence model is also different with the experiment result. Then the writer compares the press distribution on airfoil surface and the flow field structure in some typical conditions which are simulated by the SST k-ω turbulence model, and researches the S809 airfoil’s aerodynamic performance under the static stall. The simulation result shows that the separation point is on the suction surface of the airfoil when the separation of airfoil’s boundary layer flow occurs. It is moving to the airfoil leading edge with the increasing angle of attack until the separation of all the boundary layer in airfoil suction surface occurs. When the angle of attack is large enough, the separation vortex of wake is reattached to the airfoil surface, forming the two-time vortices.

文章引用: 干雨新. 大型风力机翼型静态气动性能的数值模拟[J]. 流体动力学, 2013, 1(4): 47-59. http://dx.doi.org/10.12677/IJFD.2013.14008

参考文献

[1] 吴新年, 刘全根 (1999) 风能——21世界人类理想的替代能源]. 中国科学院资源环境科学信息中心1999年研究报告, 中国科学院资源科学信息中心, 北京.
[2] 赵峰, 段巍 (2010) 基于动量–叶素理论及有限元方法的风力机叶片载荷分析和强度计算. 机械设计与制造, 8, 42-44.
[3] Bertagolio, F., Sorensen, N., Johansen, J. and Fuglsang, P. (2001) Wind turbine airfoil catalogue. Risφ National Laboratory, Roskilde, Denmark.
[4] 叶枝全, 黄继雄, 陈严 (2003) 适用于风力机的新翼型气动性能的实验研究. 太阳能学报, 4, 548-554.
[5] Somers, D.M. (1989) Design and experimental results for the S809 airfoil, Airfoils, Inc., State College.
[6] 纪兵兵, 陈金瓶 (2012) ANSYS ICEM CFD网格划分技术实例详解. 中国水利水电出版社, 北京.
[7] 王强 (2010) 水平轴风力机气动性能数值模拟研究. 南京航空航天大学, 南京.
[8] 陆志良 (2009) 空气动力学. 北京航空航天大学出版社, 北京.
[9] 张义华 (2007) 水平轴风力机空气动力学数值模拟. 重庆大学, 重庆.