水资源研究  >> Vol. 3 No. 1 (February 2014)

基于LS-SVM的改进统计降尺度方法
A Statistical Downscaling Method Based on Least Squares Support Vector Machines

DOI: 10.12677/JWRR.2014.31012, PDF, HTML, 下载: 2,126  浏览: 7,409  国家自然科学基金支持

作者: 侯雨坤, 陈 华, 黄 逍, 许崇育:武汉大学水资源与水电工程科学国家重点实验室,武汉

关键词: 统计降尺度LS-SVMSDSMStatistical Downscaling; LS-SVM; SDSM

摘要: 统计降尺度方法作为一种计算量小、使用灵活的降尺度模型,被越来越多应用到气候变化研究当中。本文以湘江流域为例,开发了一种基于LS-SVM回归的改进统计降尺度算法,并与经典统计降尺度模型SDSM (Statistical Downscaling Model)进行比较。结果表明,在湘江流域,无论是降水模拟和温度模拟,基于LS-SVM回归算法的改进统计降尺度方法都能达到SDSM的效果,而温度的模拟,LS-SVM回归降尺度方法模拟结果更好。为了使得这种方法能更适合气候变化对水资源的影响研究,还需要在更多的区域进行应用证明。
Abstract:  The statistical downscaling method has been more and more utilized in the climate change study for its simplicity and flexibility. A statistical downscaling method based on LS-SVM (least squares support vector machines) was developed and compared with SDSM (Statistical Downscaling Model) to test its ability in downscaling precipitation and temperature in Xiangjiang Basin. The results showed that the method based on LS-SVM has the similar performance with the SDSM method in simulating precipitation, while it was superior to SDSM in simulating temperature. The proposed method still needs to be applied to more regions to make it more suitable for studying the impact on water resources under climate change.

文章引用: 侯雨坤, 陈华, 黄逍, 许崇育. 基于LS-SVM的改进统计降尺度方法[J]. 水资源研究, 2014, 3(1): 72-77. http://dx.doi.org/10.12677/JWRR.2014.31012

参考文献

[1] 赵芳芳, 徐宗学. 统计降尺度方法和Delta方法建立黄河源区气候情景的比较分析[J]. 气象学报, 2007, 65(4): 653-662.
ZHAO Fangfang, XU Zongxue. Comparative analysis on downscaled climate scenarios for headwater Catchment of Yellow River using SDSM and delta methods. Acta Meteorogica Sinica, 2007, 65(4): 653-662.
[2] 刘永和, 郭维栋, 冯锦明, 张可欣. 气象资料的统计降尺度方法综述[J]. 地球科学进展, 2011, 26(8): 837-847.
LIU Yonghe, GUO Weidong, FENG Jinming and ZHANG Kexin. A summary of methods for statistical downscaling of meteorological data. Advances in Earth Science, 2011, 26(8): 837-847.
[3] GUO, J., CHEN, H., XU, C. Y., et al. Prediction of variability of precipitation in the Yangtze River Basin under the climate change conditions based on automated statistical downscaling. Stochastic Environmental Research and Risk Assessment, 2012, 26(2): 157-176.
[4] CHEN, H., GUO, J., et al. Downscaling GCMs using the Smooth Support Vector Machine method to predict daily precipitation in the Hanjiang Basin. Advances in Atmospheric Sciences, 2010, 27(2): 274-284.
[5] 褚健婷, 夏军, 许崇育. SDSM模型在海河流域统计降尺度研究中的适用性分析[J]. 资源科学, 2008, 30(12): 1825-1832.
CHU Jianting, XIA Jun and XU Chongyu. Suitability analysis of SDSM Model in the Haihe River Basin. Resources Science, 2008, 30(12): 1825-1832.
[6] CHEN, H., Xu, C. Y. and GUO, S. Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. Journal of Hydrology, 2012, 434: 36-45.
[7] JEONG, D. I., ST-HILAIRE, A., OUARDA, T., et al. Comparison of transfer functions in statistical downscaling models for daily temperature and precipitation over Canada. Stochastic Environmental Research and Risk Assessment, 2012, 26(5): 633653.
[8] 范丽军, 符淙斌, 陈德亮. 统计降尺度法对未来区域气候变化情景预估的研究进展[J]. 地球科学进展, 2005, 20(3): 320329.
FAN Lijun, FU Congbin and CHEN Deliang. Review on creating future climate change scenarios by statistical downscaling techniques. Advances in Earth Science, 2005, 20(3): 320-329.
[9] HESSAMI, M., GACHON, P., OUARDA, T. B. M. J., et al. Automated regres-sion-based statistical downscaling tool. Environmental Modelling& Software, 2008, 23(6): 813-834.
[10] 杨纫章. 湘江流域水文地理[J]. 地理学报, 1957, 23(2): 161182.
YANG Renzhang. Hydrography of the Hsiang-Kiang Basin, Hunan Province. Acta Geographica Sinica, 1957, 23(2): 161182.