FIN  >> Vol. 4 No. 1 (January 2014)

    基于PCA和灰色系统的住房价格建模
    Housing Price Modeling with PCA and Gray System

  • 全文下载: PDF(285KB) HTML    PP.9-15   DOI: 10.12677/FIN.2014.41002  
  • 下载量: 2,063  浏览量: 5,586   科研立项经费支持

作者:  

彭相武,苏理云,赵彦勇:重庆理工大学数学与统计学院,重庆

关键词:
房价主成分分析灰色系统理论线性回归方程House Price; Principal Component Analysis; Grey System Theory; Linear Regression Equation

摘要:

本文从房屋供给和需求两个方面科学的分析影响我国房价的因素,运用主成分分析法去除各影响因素间的线性相关性,同时减少了影响因素的个数;接下来利用最小二乘法确立房价与影响因素间的线性回归方程;最后引入灰色系统理论中的灰色预测方法,建立各影响因素的灰色预测模型,并对其进行量化分析、预测,将所得到的影响因素预测值代入到回归方程,以预测房价

In this paper, we analyze the factors which affect the house prices from two aspects: housing supply and demand. The approach of principal component analysis is taken to remove the linear correlation between the factors and to reduce the number of factors. Furthermore, we use the least squares method to set up the linear regression equation between prices and affecting factors. At last, we get gray forecasting model of factors by introducing gray prediction method of the gray system theory and substitute the predictive value of the factors into the regression equation to predict the house prices.

文章引用:
彭相武, 苏理云, 赵彦勇. 基于PCA和灰色系统的住房价格建模[J]. 金融, 2014, 4(1): 9-15. http://dx.doi.org/10.12677/FIN.2014.41002

参考文献

[1] Clapp, J.M. and Giaccotto, C. (2002) Evaluating house price forecasts. Journal of Real Estate Research, 24, 1-26.
[2] Clapp, J.M., Kim, H.-J. and Gelfand, A.E. (2002) Predicting spatial patterns of house prices using LPR and Bayesian smoothing. Real Estate Economics, 30, 505-532.
[3] Clapp, J.M. (2004) A Semi Parametric Method for estimating local house price indices. Real Estate Economics, 32, 127-160.
[4] Bin, O. (2004) A prediction comparison of housing sales prices by parametric versus semi-parametric regressions. Journal of Housing Economics, 13, 68-84.
[5] Martins-Filho, C. and Bin, O. (2005) Estimation of hedonic price functions via additive nonparametric regression. Empirical and Economics, 30, 99-114.
[6] Gress, B. (2004) Using semi-parametric spatial autocorrelation models to improve hedonic housing price prediction. Mimeo, Department of Economics, Riverside.
[7] 杨慎 (2003) 客观看待房价上涨问题. 中国房地信息, 2, 4-5.
[8] 包宗华 (2004) 怎样看待我国的住房价格. 中国房地产, 1, 18-19.
[9] 时筠仑, 雷星晖, 苏涛永 (2005) 房价波动与影响因素分析. 价格理论与实践, 4, 21-22.
[10] 孙怀通, 张伟红 (2006) 我国房地产价格上涨的原因及对策浅析. 商场现代化, 15, 28-29.
[11] 严焰 (2006) 基于岭回归的房价模型构建及启示. 商场现代化, 4, 38-39.
[12] 赵丽丽, 焦继文 (2007) 房价影响因素的关联度分析. 统计与决策, 23, 74-75.
[13] 郑思齐, 王寅啸 (2007) 房价上涨预期对住房需求的放大效应研究. 中国物价, 6, 52-55.
[14] 李连光, 葛新锋, 李丽 (2009) 一个基于供求两方面的房价决定模型. 中北大学学报, 3, 58-61.
[15] George P. McCabe (2004) Principal variables. Technometrics, 26, 134-137.
[16] 张洁, 高新波, 焦李成 (2006) 基于特征加权的模糊聚类新算法. 电子学报, 1, 412-420.
[17] Andersson, T. (1958) Multivariate statistical analysis. John Wiley and Sons, Inc., New York