糖皮质激素诱导移植耐受的免疫细胞调控效应及机制
Immunomodulation and Mechanism of Transplantation Immune Tolerance Induced by Glucocorticoids
DOI: 10.12677/is.2014.21002, PDF, HTML,  被引量 下载: 3,097  浏览: 13,935  国家自然科学基金支持
作者: 廖炯博, 邵 琨:上海交通大学附属瑞金医院肾脏移植中心,上海;复旦大学基础医学院免疫学系,上海;复旦大学生物治疗研究中心,上海;王 筱, 刘光伟:复旦大学基础医学院免疫学系,上海;复旦大学生物治疗研究中心,上海;王祥慧:上海交通大学附属瑞金医院肾脏移植中心,上海
关键词: 糖皮质激素T细胞发育、分化免疫稳态免疫调节Glucocorticoid; T Cell Development and Differentiation; Immunologic Homeostasis; Immunomodulation
摘要: 糖皮质激素(Glucocorticoid; GC)是强有效的甾体类抗炎药和免疫抑制剂,在重症感染、休克、自身免疫病和器官移植等疾病中广泛应用。在器官移植领域GC一直发挥着基础性作用,它是器官移植围手术期免疫诱导必不可少的药物,是经典免疫抑制维持三联方案的重要组成部分,也是治疗急性排斥的首选用药。其作用广泛,能调节代谢、细胞发育和分化;作用机制复杂,不仅有经典的细胞核糖皮质激素受体(glucocorticoid receptor; GCR)信号通路调节DNA的转录,还有其他多种快速作用机制调节细胞功能。本文对GC诱导移植免疫耐受的免疫细胞学调控效应及其机制做以简要综述。 Glucocorticoids (GCs) are potent steroidal anti-inflammatory drugs and immunosuppressants, which are widely used in severe infection, shock, autoimmune diseases, organ transplantation and other diseases. GCs have played a fundamental role in the field of organ transplantation, including induction of immune tolerance, maintenance of immunosuppression and therapy for graft rejection. They act on various cells, and regulate metabolism, cell growth and differentiation. The modulatory mechanisms of GCs are very complex. Through the classic cytoplasmic glucocorticoid receptor (GCR) signaling pathway, it can regulate the transcription of DNA. And, it also has rapid effects on immunity via non-genomic mechanisms. This review summarized the current progresses of immunomodulation and mechanisms of glucocorticoids on the transplantation immune tolerance.
文章引用:廖炯博, 邵琨, 王筱, 王祥慧, 刘光伟. 糖皮质激素诱导移植耐受的免疫细胞调控效应及机制[J]. 免疫学研究, 2014, 2(1): 5-10. http://dx.doi.org/10.12677/is.2014.21002

参考文献

[1] Hillier, S.G. (2007) Diamonds are forever: The cortisone legacy. The Journal of endocrinology, 195, 1-6.
[2] Tullius, S.G. and Murray, J.E. (2013) A life of curiosity, humanism, and persistence. American Journal of Transplantation, 13, 5-6.
[3] Kidney Disease: Improving Global Outcomes Transplant Work Group (2009) KDIGO clinical practice guideline for the care of kidney transplant recipients. American Journal of Transplantation, 9, 1-155.
[4] Halloran, P.F. (2004) Immunosuppressive drugs for kidney transplantation. The New England Journal of Medicine, 351, 2715-2729.
[5] Filler, G., Huang, S.H. and Sharma, A.P. (2011) Steroid-resistant acute allograft rejection in renal transplantation. Pediatric Nephrology, 26, 651-653.
[6] Knight, S.R. and Morris, P.J. (2010) Steroid avoidance or withdrawal after renal transplantation increases the risk of acute rejection but decreases cardiovascular risk. A meta-analysis. Transplantation, 89, 1-14.
[7] Pirenne, J., Aerts, R. Koshiba, T., et al. (2003) Steroid-free immunosuppression during and after liver transplantation—A 3-yr follow-up report. Clinical Transplantation, 17, 177-182.
[8] Deeg, H.J. (2007) How I treat refractory acute GVHD. Blood, 109, 4119-4126.
[9] Lund, T., Fosby, B., Korsgren, O., et al. (2008) Glucocorticoids reduce pro-inflammatory cytokines and tissue factor in vitro and improve function of transplanted human islets in vivo. Transplant International, 21, 669-678.
[10] Gross, K.L., Lu, N.Z. and Cid-lowski, J.A. (2009) Molecular mechanisms regulating glucocorticoid sensitivity and resistance. Molecular and Cellular Endocrinology, 300, 7-16.
[11] Zen, M., Canova, M., Campana, C., et al. (2011) The kaleidoscope of glucorticoid effects on immune system. Autoimmunity Reviews, 10, 305-310.
[12] Buttgereit, F. and Scheffold, A (2002) Rapid glucocorticoid effects on immune cells. Steroids, 67, 529-534.
[13] Muller, N., Fischer, H.J., Tischner, D., et al. (2013) Glucocorticoids induce effector T cell depolarization via ERM proteins, thereby impeding migration and APC conjugation. Journal of Immunology, 190, 4360-4370.
[14] Harr, M.W., Rong, Y., Bootman, M.D., et al. (2009) Glucocorticoid-mediated inhibition of Lck modulates the pattern of T cell receptor-induced calcium signals by down-regulating inositol 1,4,5-trisphosphate receptors. The Journal of Biological Chemistry, 284, 31860-31871.
[15] Harr, M.W., McColl, K.S., Zhong, F., et al. (2010) Glucocorticoids downregulate Fyn and inhibit IP(3)-mediated calcium signaling to promote autophagy in T lymphocytes. Autophagy, 6, 912-921.
[16] Tosa, N., Murakami, M., Jia, W.Y., et al. (2003) Critical function of T cell death-associated gene 8 in glu-cocorticoid-induced thymocyte apoptosis. International Immunology, 15, 741-749.
[17] Thompson, E.B. (2008) Stepping stones in the path of glucocorticoid-driven apoptosis of lymphoid cells. Acta Biochimica et Biophysica Sinica, 40, 595-600.
[18] Seissler, N., Schmitt, E., Hug, F., et al. (2012) Methylprednisolone treatment increases the proportion of the highly suppressive HLA-DR(+)-Treg-cells in transplanted patients. Transplant immunology, 27, 157-161.
[19] Erlacher, M., Knoflach, M., Stec, I.E., et al. (2005) TCR signaling inhibits glucocortico-id-induced apoptosis in murine thymocytes depending on the stage of development. European Journal of Immunology, 35, 3287-3296.
[20] D’Adamio, F., Zollo, O., Moraca, R., et al. (1997) A new dexamethasone-induced gene of the leucine zipper family protects T lymphocytes from TCR/CD3-activated cell death. Immunity, 7, 803-812.
[21] Delfino, D.V., Spinicelli, S., Pozzesi, N., et al. (2011) Glucocorticoid-induced activation of caspase-8 protects the glucocorticoid-induced protein Gilz from proteasomal degradation and induces its binding to SUMO-1 in murine thymocytes. Cell Death and Differentiation, 18, 183-190.
[22] Cupic, B., Breljak, D. and Gabrilovac, J. (2005) Receptor-mediated down-regulation of neutral endopeptidase (NEP; EC 3.4.24.11; CD10) on immature B lymphocytes by dexamethasone. International Journal of Molecular Medicine, 15, 10231031.
[23] Youinou, P. and Pers, J.O. (2010) The late news on baff in autoimmune diseases. Autoimmunity Reviews, 9, 804-806.
[24] Lill-Elghanian, D., Schwartz, K., King, L., et al. (2002) Glucocorticoid-induced apoptosis in early B cells from human bone marrow. Experimental Biology and Medicine, 227, 763-770.
[25] Suda, T., Chida, K., Matsuda, H., et al. (2003) High-dose intravenous glucocorticoid therapy abrogates circulating dendritic cells. The Journal of Allergy and Clinical Immunology, 112, 1237-1239.
[26] Abe, M. and Thomson, A.W. (2006) Dexamethasone preferentially suppresses plasmacytoid dendritic cell differentiation and enhances their apoptotic death. Clinical Immunology, 118, 300306.
[27] Truckenmiller, M.E., Princiotta, M.F., Norbury, C.C., et al. (2005) Corticosterone impairs MHC class I antigen presentation by dendritic cells via reduction of peptide generation. Journal of Neuroimmunology, 160, 48-60.
[28] Hontelez, S., Karthaus, N., Looman, M.W., et al. (2013) DCSCRIPT regulates glucocorticoid receptor function and ex-pression of its target GILZ in dendritic cells. Journal of Immunology, 190, 3172-3179.
[29] Ehrchen, J., Steinmuller, L., Barczyk, K., et al. (2007) Glucocorticoids induce differentiation of a specifically activated, anti-inflammatory subtype of human monocytes. Blood, 109, 12651274.
[30] Schmidt, M., Lugering, N., Lugering, A., et al. (2001) Role of the CD95/CD95 ligand system in glucocorticoid-induced monocyte apoptosis. Journal of Immunology, 166, 1344-1351.
[31] Kraaij, M.D., van der Kooij, S.W., Reinders, M.E., et al. (2011) Dexamethasone increases ROS production and T cell suppressive capacity by anti-inflammatory macrophages. Molecular Immunology, 49, 549-557.
[32] Saffar, A.S., Dragon, S., Ezzati, P., et al. (2008) Phosphatidylinositol 3-kinase and p38 mitogen-activated protein kinase regulate induction of Mcl-1 and survival in glucocorticoid-treated human neutrophils. The Journal of Allergy and Clinical Immunology, 121, 492-498.
[33] Takahira, R., Yonemura, K., Fujise, Y., et al. (2001) Dexamethasone attenuates neutrophil infiltration in the rat kidney in ischemia/reperfusion injury: The possible role of nitroxyl. Free Radical Biology & Medicine, 31, 809-815.
[34] Zhang, K., Bai, X., Li, R., et al. (2012) Endogenous glucocorticoids promote the expansion of myeloid-derived suppressor cells in a murine model of trauma. International Journal of Molecular Medicine, 30, 277-282.
[35] Jabara, H.H., Brodeur, S.R. and Geha, R.S. (2001) Glucocorticoids upregulate CD40 ligand expression and induce CD40Ldependent immunoglobulin isotype switching. The Journal of Clinical Investigation, 107, 371-378.
[36] Heise, N., Shumilina, E., Nurbaeva, M.K., et al. (2011) Effect of dexamethasone on Na+/Ca2+ exchanger in dendritic cells. American Journal of Physiology, Cell Physiology, 300, C13061313.