范德华作用的量子化学研究(四)
Quantum Chemical Study of the Role of the Van Der Waals Interaction (4)
摘要:
本文通过耦合簇CCSD等量子化学方法,计算了一些分子间范德华作用体系:氢分子晶面(H2)6,氢分子晶胞((H2)6)2,苯分子二聚体(C6H6) 2,以及氢分子与氟化氢二聚体HH----FH。并作了相应的电子密度差图形。通过图形分析,研究了范德华作用,讨论了取向力、诱导力,分析了配位键、氢键、范德华作用之间的异同。归纳了分子间范德华作用的机理、特征。范德华作用与共价键、氢键,有着统一的本质:在一定的格局下共享电子产生引力,来抗衡核与核、电子与电子的排斥,并达到平衡。
In this work, via coupled-cluster CCSD and other quantum chemistry methods, some systems with intermolecular van der Waals (vdW) interactions are calculated, including crystal face of molecular hydrogen(H2)6, crystal cell of molecular hydrogen((H2)6)2, benzene dimer(C6H6) 2as well as dimer between molecular hydrogen and hydrogen fluoride HH----FH. Corresponding difference maps of electron density are also plotted. In terms of graphical analysis, vdW interaction is investigated; orientation force, induction force and dispersion force are discussed; the similarities and differences between coordinate bonds, hydrogen bonds and vdW interactions are analyzed. The mechanism and characteristic of intermolecular vdW interaction are concluded. vdW interaction has identical nature as covalent bonds and hydrogen bonds, namely under certain circumstances, shared electrons form attractive force to contend with the nuclear- nuclear and electron-electron repulsive force, and eventually achieve balance.
文章引用:周光耀. 范德华作用的量子化学研究(四)[J]. 物理化学进展, 2014, 3(1): 1-10. http://dx.doi.org/10.12677/JAPC.2014.31001

参考文献

[1] Casimir, H.B.G. and Polder, D. (1948) The influence of retardation on the London-van der Waals forces. Physical Review, 73, 360-372.
[2] Mehran, K. (1999) The ‘‘friction’’ of vacuum, and other fluctuation-induced forces. Reviews of Modern Physics, 71, 1233-1245.
[3] 周光耀 (2013) 范德华作用的量子化学研究(三). 物理化学进展, 2, 47-53.
[4] The Gordon Research Group (2007) The general atomic and molecular electronic structure system (GAMESS) is a general ab initio quantum chemistry package. MSG-65 Symposium, Maui, 15-18 January 2007. http://www.msg.chem.iastate.edu/gamess/
[5] Lu, T. and Chen, F.W. (2012) Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33, 580-592.
[6] Theoretical and Computational Biophysics Group (2006) VMD visual molecular dynamics. University of Illinois at UrbanaChampaign, Champaign. http://www.ks.uiuc.edu/Research/vmd/
[7] Tapia, O. and Bessis, G. (1972) Intermolecular interactionsdependence on interand intra-molecular distances. A configuration interaction study of the H2---H2 system. Theoretical Chemistry Accounts, 25, 130-137.
[8] Lu, T. and Chen, F.W. (2013) Revealing the nature of intermolecular interaction and configurational preference of the nonpolar molecular dimers (H2)2, (N2)2, and (H2)(N2). Journal of Molecular Modeling, 19, 5387-5395.
[9] van Kranendonk, J. and Gush, H.P. (1962) The crystal structure of solid hydrogen. Physics Letters A, 1, 22.
[10] Matthew, C., Kimberly, C. and Clifford, E.D. (1962) Hydrogen molecule clusters. The Journal of Physical Chemistry A, 108, 3143-3152.
[11] 王宇宙, 吴安心 (2008) 芳环超分子体系中的π-π作用. 有机化学, 6, 997-1011.
[12] 孙迎辉, 张慧东, 叶开其等 (2005) 基于分子间π-π相互作用形成的吖啶荧光化合物超分子结构及其性能研究. 高等学校化学学报, 26. 1865-1868.
[13] 周光耀 (1985) 关于电负性均衡原理, 化学学报, 1, 1-3.
[14] 王海燕, 曾艳丽, 孟令鹏, 郑世钧 (2005) 有关氢键理论研究的现状及前景. 河北师范大学学报(自然科学版), 29, 177-181.
[15] Sapse, A.M. (1983) Ab initio studies of weakly bound complexes between some nonpolar molecules and hy-drogen fluoride. The Journal of Chemical Physics, 78, 5733.
[16] Hoard, J.L., Geller, S. and Cashin, W.M. (1951) Structures of molecular addition compounds. III. Ammonium-boron trifluoride, H3N-BF3. Acta Crystallographica, 4, 396-398.