TC4钛合金在Na3PO4-NaF-CH3COOH溶液体系中转化膜的制备及其性能研究
TC4 Titanium Alloy in the Na3PO4-NaF-CH3COOHSolution Conversion Coating Preparation and Its Performance Study
DOI: 10.12677/MS.2014.42010, PDF, HTML, 下载: 2,950  浏览: 8,244  科研立项经费支持
作者: 吕院生, 陈廷益, 李欣明:贵州师范大学,材料与建筑工程学院,无机非金属功能材料重点实验室,贵阳
关键词: 钛合金表面Na3PO4-NaF-CH3COOH 溶液体系附着力性能Titanium Alloy Surface; Na3PO4-NaF-CH3COOH Solution System; Adhesion Performance
摘要: 采用Na3PO4-NaF-CH3COOH溶液体系对TC4钛合金进行表面转化膜处理。用SEMEDSXRD对转化膜表面形貌和组成进行分析,发现膜层主要由Na3tiF6相、TiO2相和基体钛相等组成,结晶过程是膜层增重的主要原因。研究转化温度与时间对未酸洗及经过酸洗处理的TC4钛合金在Na3PO4-NaF-CH3COOH溶液体系下的影响,发现在25℃、10 min的条件下,钛合金成膜效果最好,膜层呈浅灰色,而转化膜的制备亦是一个腐蚀与生长同时进行的过程。TC4钛合金成膜前后的涂层附着力进行比对,结果显示经过磷酸盐氟化物混合溶液处理的样品表面涂层附着力得到了较大的提升。
Abstract: Using the solution system of Na3PO4-NaF-CH3COOH to conduct conversion coating surface treatment on TC4 titanium alloy, we analyze the surface shape and composition of conversion film by using SEM, EDS, XRD. Results show that the conversion film is mainly composed by Na3tiF6 phase, TiO2 titanium phase and the matrix. The main reason for weight gain is the process of film crystallization. In Na3PO4-NaF-CH3COOH solution system, we study the effect of translative temperature and time on the pickling and unpickling treatments of TC4 titanium alloy. We find that in the condition of 25˚C and 10 min, the process of titanium alloy film is best; and that the colour is light gray while the fabrication of the conversion film is a process of corrosion and growth. Comparing the coating adhesion force of the TC4 titanium alloy before and after filming, we find that the sample surface coating adhesion was greatly improved after fluoride phosphate mixed solution treatment.
文章引用:吕院生, 陈廷益, 李欣明. TC4钛合金在Na3PO4-NaF-CH3COOH 溶液体系中转化膜的制备及其性能研究[J]. 材料科学, 2014, 4(2): 56-62. http://dx.doi.org/10.12677/MS.2014.42010

参考文献

[1] 孟庆兰, 关淑敏, 李中 (2011) 世界航空钛市场现状及发展趋势. 钛工业进展, 2, 1-3.
[2] 郭周强, 葛利玲, 袁航等 (2012) 钛合金 TC4 表面纳米化及其热稳定性. 材料热处理学报, 3, 114-118.
[3] 黄旭 (2012) 航空用钛合金发展概述. 军民两用技术与产品, 7, 12-14.
[4] Cui, C., Hu, B.M., Zhao, L., et al. (2011) Titanium Alloy Pro-duction Technology, Market Prospects and Industry De- velopment. Materials & Design, 3, 1684-1691.
[5] 杨英丽, 苏航标, 郭荻子等 (2010) 我国舰船钛合金的研究进展. 中国有色金属学报, 1, s1002-s1007.
[6] 于振涛, 张明华, 余森等 (2012) 中国医疗器械用钛合金材料研发,生产与应用现状分析. 中国医疗器械信息, 7, 1-8.
[7] 王焕琴 (2001) 钛及钛合金焊接接头的组织,性能和断裂特性. 焊接, 11, 27.
[8] Miracle, D.B., Tamirisakandala, S., Bhat, R.B., et al. (2012) Titanium Alloy Microstructural Refinement Method and High Temperature, High Strain Rate Su-perplastic Forming of Titanium Alloys. US Patent, 8, 128,764[P].
[9] 姜海涛, 邵忠财, 魏守强 (2010) 钛合金表面处理技术的研究进展. 电镀与精饰, 10, 15-20.
[10] 屠振密, 朱永明, 李宁等 (2010) 钛及钛合金表面金属电沉积的预处理问题. 中国表面工程, 1, 24-29.
[11] Zhang, K.M., Zou, J.X., Li, J., et al. (2010) Surface Modification of TC4 Ti Alloy by Laser Cladding with TiC + Ti Powders. Transactions of Nonferrous Metals Society of China, 11, 2192-2197.
[12] 訾赟, 安成强, 郝建军 (2010) 铝合金无铬化学氧化工艺的研究进展. 电镀与精饰, 6, 26-30.
[13] Michiardi, A., Hélary, G., Nguyen, P.C.T., et al. (2010) Bioactive Polymer Grafting onto Titanium Alloy Surfaces. Acta Biomaterialia, 2, 667-675.
[14] 王东生, 田宗军, 沈理达, 刘志东, 黄因慧 (1698) 激光表面熔覆制备纳米结构涂层的研究进展. 中国激光, 11, 1698-1709.