JEE  >> Vol. 2 No. 1 (March 2014)

    基于粒子群算法LSSVM短期负荷预测模型研究
    LSSVM Based on PSO Algorithm to Short-Term Load Forecasting Model Research

  • 全文下载: PDF(445KB) HTML    PP.1-7   DOI: 10.12677/JEE.2014.21001  
  • 下载量: 1,892  浏览量: 7,642  

作者:  

龚文龙,姚建刚:湖南大学电气与信息工程学院,长沙;
金小明:南方电网技术研究中心,广州

关键词:
短期负荷预测粒子群优化算法最小二乘机支持向量机参数选取Short-Term Load Forecasting; Panicle Swarm Optimization; Least Squares Support Vector Machine; Parameter Selection

摘要:

短期负荷预测的精度直接影响电力系统运行的可靠性和供电质量。提出一种基于粒子群优化算法的最小二乘支持向量机短期负荷预测的模型和算法,对最小二乘支持向量机的参数寻优,再以测试集误差作为判决依据,对模型参数的进行优化选择,从而提高预测精度,避免最小二乘支持向量机对经验的依赖以及预测过程中对模型参数的盲目选择。利用该模型对某电网进行负荷预测,证明该模型有较好的收敛性、较高的预测精度和较快的训练速度。

Short-term load forecasting accuracy directly affects the reliability of power system operation and power supply quality. Least squares support vector machine short-term load forecasting model based on model particle swarm optimization algorithm is proposed. The model optimizes the parameter of least squares support vector machines, with the test set error as the basis of judgment for optimal selection of the model parameters so as to improve prediction accuracy, avoid blind choice of model parameters in the forecasting process and prevent dependence on least squares support vector machine experience. We use this model to predict the loads on the grid and prove that the model has better convergence, higher accuracy and faster training speed.

文章引用:
龚文龙, 姚建刚, 金小明. 基于粒子群算法LSSVM短期负荷预测模型研究[J]. 电气工程, 2014, 2(1): 1-7. http://dx.doi.org/10.12677/JEE.2014.21001

参考文献

[1] 姚建刚, 章建 (1999) 电力市场分析. 高等教育出版社, 北京, 173-174.
[2] 刘耀年, 祝滨, 曾令全, 等 (2003) 一种利用可加性模糊系统的短期负荷预测新方法. 电网技术, 8, 68-71.
[3] 赵剑剑, 张步涵, 程时杰, 等 (2003 一种基于径向基函数的短期负荷预测方法. 电网技术, 6, 22-25.
[4] Mastorocostas, P.A. Theocharis Vassilios, J.B. and Petridis, S. (2001) A constrained orthogonal least-squares method for generating TSK fuzzy models application to short-term load forecasting. Fuzzy Sets and Systems, 118, 215-233.
[5] 高山, 单渊达 (2001) 神经网络短期负荷预测输入变量选择新方法. 电力系统自动化, 22, 41-44.
[6] 谢宏, 程浩忠, 张国立, 等 (2003) 基于粗糙集理论建立短期电力负荷神经网络预测模型. 中国电机工程学报, 11, 1-4.
[7] 谢宏, 牛东晓, 张国立, 等 (2005) 一种模糊模型的混合建模方法及在短期负荷预测中的应用. 中国电机工程学报, 8, 17-22.
[8] 谢宏, 魏江平, 刘鹤立 (2006) 短期负荷预测中支持向量机模型的参数选取和优化方法. 电机工程学报, 22, 1722.
[9] Shevade, S.K., Keerthi, S.S., Bhattacharyy, C., et al. (2000) Improvements to SMO algorithm for SVM regression. IEEE Transactions on Neural Networks, 11, 1188-1193.
[10] Suykens, J.A.K., Lukas, L. and Vandewalle, J. (2000) Approximation using least squares support vector machine. IEEE International Symposium on Circuits and System, Geneva, 28-31 May 2000, 757-760.
[11] 王德意, 杨卓, 杨国清 (2008) 基于负荷混沌特性和最小二乘支持向量机的短期负荷预测. 电网技术, 7, 66-71.
[12] 耿艳, 韩学山, 韩力 (2008) 基于最小二乘支持向量机的短期负荷预测. 电网技术, 18, 72-76.
[13] 李元诚, 方廷健, 郑国祥 (2003) 短期电力负荷预测的小波支持向量机方法研究. 中国科学技术大学学报, 6, 726-732.
[14] 唐杰明, 刘俊勇, 杨可, 等 (2009) 基于灰色模型和最小二乘支持向量机的电力短期负荷组合预测. 电网技术, 3, 63-68.
[15] 赵登福, 庞文晨, 张讲社, 等 (2005) 基于贝叶斯理论和在线学习支持向量机的短期负荷预测. 中国电机工程学报, 13, 8-13.
[16] Wang, W.J., Xua, Z.B. and Lu, W.Z., et al. (2003) Deter-mination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing, 55, 643-663.
[17] 孙斌, 姚海涛 (2012) 基于PSO优化LSSVM的短期风速预测. 电力系统保护与控制, 5, 85-89.
[18] 陈治明 (2011) 改进的粒子群算法及其SVM参数优化应用. 计算机工程与应用, 10, 38-40.
[19] 潘峰, 李位星, 高琪, 等 (2013) 粒子群优化算法与多目标优化. 北京理工大学出版社, 北京, 130-132.
[20] Suykens, J.A.K. and Vandewalle, J. (2000) Recurrent least squares support vector machines. IEEE Transactions on Circuits and Systems, 47, 1109-1114.